2012, 17(6): 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

Lyapunov-Schmidt reduction for optimal control problems

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

2. 

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653

Received  August 2011 Revised  March 2012 Published  May 2012

In this paper, we use the method of characteristics to study singularities in the flow of a parameterized family of extremals for an optimal control problem. By means of the Lyapunov--Schmidt reduction a characterization of fold and cusp points is given. Examples illustrate the local behaviors of the flow near these singular points. Singularities of fold type correspond to the typical conjugate points as they arise for the classical problem of minimum surfaces of revolution in the calculus of variations and local optimality of trajectories ceases at fold points. Simple cusp points, on the other hand, generate a cut-locus that limits the optimality of close-by trajectories globally to times prior to the conjugate points.
Citation: Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201
References:
[1]

L. Berkovitz, "Optimal Control Theory,'', Applied Mathematical Sciences, (1974).

[2]

G. Bliss, "Calculus of Variations,'', The Mathematical Association of America, (1925).

[3]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,'', AIMS Series on Applied Mathematics, 2 (2007).

[4]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control. Optimization, Estimation, and Control,'' Revised Printing,, Hemisphere Publishing Corp., (1975).

[5]

C. I. Byrnes and H. Frankowska, Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati,, C. R. Acad. Sci. Paris Série I Math., 315 (1992), 427.

[6]

C. I. Byrnes and A. Jhemi, Shock waves for Riccati partial differential equations arising in nonlinear optimal control,, in, 12 (1992), 211.

[7]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,'', Graduate Texts in Mathematics, (1973).

[8]

M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I,, Applied Mathematical Sciences, 51 (1985).

[9]

M. Kiefer and H. Schättler, Parametrized families of extremals and singularities in solutions to the Hamilton-Jacobi-Bellman equation,, SIAM J. on Control and Optimization, 37 (1999), 1346. doi: 10.1137/S0363012997319139.

[10]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory,, J. of Mathematical Analysis and Applications, 269 (2002), 98. doi: 10.1016/S0022-247X(02)00008-2.

[11]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 345. doi: 10.1023/B:JOTA.0000042525.50701.9a.

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Translated by D. E. Brown, (1964).

[13]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161.

[14]

H. Schättler and U. Ledzewicz, Perturbation feedback control-a geometric interpretation,, Numerical Algebra, (2012).

[15]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control-Theory, Methods and Examples,'', Springer-Verlag, (2012).

[16]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math. (2), 66 (1957), 545. doi: 10.2307/1969908.

[17]

L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory,'', Foreword by Wendell H. Fleming, (1969).

show all references

References:
[1]

L. Berkovitz, "Optimal Control Theory,'', Applied Mathematical Sciences, (1974).

[2]

G. Bliss, "Calculus of Variations,'', The Mathematical Association of America, (1925).

[3]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,'', AIMS Series on Applied Mathematics, 2 (2007).

[4]

A. E. Bryson, Jr. and Y. C. Ho, "Applied Optimal Control. Optimization, Estimation, and Control,'' Revised Printing,, Hemisphere Publishing Corp., (1975).

[5]

C. I. Byrnes and H. Frankowska, Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati,, C. R. Acad. Sci. Paris Série I Math., 315 (1992), 427.

[6]

C. I. Byrnes and A. Jhemi, Shock waves for Riccati partial differential equations arising in nonlinear optimal control,, in, 12 (1992), 211.

[7]

M. Golubitsky and V. Guillemin, "Stable Mappings and their Singularities,'', Graduate Texts in Mathematics, (1973).

[8]

M. Golubitsky and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I,, Applied Mathematical Sciences, 51 (1985).

[9]

M. Kiefer and H. Schättler, Parametrized families of extremals and singularities in solutions to the Hamilton-Jacobi-Bellman equation,, SIAM J. on Control and Optimization, 37 (1999), 1346. doi: 10.1137/S0363012997319139.

[10]

J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals in optimal control theory,, J. of Mathematical Analysis and Applications, 269 (2002), 98. doi: 10.1016/S0022-247X(02)00008-2.

[11]

U. Ledzewicz, A. Nowakowski and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems,, J. of Optimization Theory and Applications (JOTA), 122 (2004), 345. doi: 10.1023/B:JOTA.0000042525.50701.9a.

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Translated by D. E. Brown, (1964).

[13]

H. Schättler and U. Ledzewicz, Synthesis of optimal controlled trajectories with chattering arcs,, Dynamics of Continuous, 19 (2012), 161.

[14]

H. Schättler and U. Ledzewicz, Perturbation feedback control-a geometric interpretation,, Numerical Algebra, (2012).

[15]

H. Schättler and U. Ledzewicz, "Geometric Optimal Control-Theory, Methods and Examples,'', Springer-Verlag, (2012).

[16]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math. (2), 66 (1957), 545. doi: 10.2307/1969908.

[17]

L. C. Young, "Lectures on the Calculus of Variations and Optimal Control Theory,'', Foreword by Wendell H. Fleming, (1969).

[1]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[2]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[3]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[4]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[5]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[6]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[7]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[8]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[9]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[10]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[11]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[12]

Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369

[13]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[14]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[15]

Jean-Pierre de la Croix, Magnus Egerstedt. Analyzing human-swarm interactions using control Lyapunov functions and optimal control. Networks & Heterogeneous Media, 2015, 10 (3) : 609-630. doi: 10.3934/nhm.2015.10.609

[16]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-29. doi: 10.3934/jimo.2017090

[17]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[18]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[19]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[20]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]