November  2012, 17(8): 2671-2689. doi: 10.3934/dcdsb.2012.17.2671

Steady states in hierarchical structured populations with distributed states at birth

1. 

Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom

2. 

Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413

Received  March 2011 Revised  August 2011 Published  July 2012

We investigate steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured models describe the dynamics of populations when individuals experience size-specific environment. This is the case for example in a population where individuals exhibit cannibalistic behavior and the chance to become prey (or to attack) depends on the individual's size. The other distinctive feature of the model is that individuals are recruited into the population at arbitrary size. This amounts to an infinite rank integral operator describing the recruitment process. First we establish conditions for the existence of a positive steady state of the model. Our method uses a fixed point result of nonlinear maps in conical shells of Banach spaces. Then we study stability properties of steady states for the special case of a separable growth rate using results from the theory of positive operators on Banach lattices.
Citation: József Z. Farkas, Peter Hinow. Steady states in hierarchical structured populations with distributed states at birth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2671-2689. doi: 10.3934/dcdsb.2012.17.2671
References:
[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation,, Appl. Math. Optim., 51 (2005), 35.   Google Scholar

[2]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431.   Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition,, Pure and Applied Mathematics (Amsterdam), 140 (2003).   Google Scholar

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, SIAM Rev., 18 (1976), 620.   Google Scholar

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators,", Lecture Notes in Mathematics, 1184 (1986).   Google Scholar

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics,, J. Math. Biol., 35 (1997), 967.   Google Scholar

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment,, Math. Models Methods Appl. Sci., 16 (2006), 1695.   Google Scholar

[8]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705.   Google Scholar

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMS-NSF Regional Conference Series in Applied Mathematics, 71 (1998).   Google Scholar

[10]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985).   Google Scholar

[11]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations,, Math. Model. Nat. Phenom., 5 (2010), 94.   Google Scholar

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model,, J. Math. Anal. Appl., 328 (2007), 119.   Google Scholar

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback,, Commun. Pure Appl. Anal., 8 (2009), 1825.   Google Scholar

[15]

J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639.   Google Scholar

[16]

J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth,, Positivity, 14 (2010), 501.   Google Scholar

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution,, Japan J. Appl. Math., 7 (1990), 433.   Google Scholar

[18]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,, Arch. Rational Mech. Anal., 54 (1974), 281.   Google Scholar

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.   Google Scholar

[20]

S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition,, J. Math. Anal. Appl., 280 (2003), 102.   Google Scholar

[21]

S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time,, J. Difference Equ. Appl., 11 (2005), 95.   Google Scholar

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations,, Trans. Amer. Math. Soc., 347 (1995), 2851.   Google Scholar

[23]

J. A. J. Metz and O. Diekmann, Age dependence,, in, 68 (1983).   Google Scholar

[24]

J. Prüss, On the qualitative behavior of populations with age-specific interactions,, Comput. Math. Appl., 9 (1983), 327.   Google Scholar

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables,, SIAM J. Appl. Math., 48 (1988), 549.   Google Scholar

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models,, J. Diff. Eq., 248 (2010), 1756.   Google Scholar

[27]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,", Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985).   Google Scholar

[28]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980).   Google Scholar

show all references

References:
[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation,, Appl. Math. Optim., 51 (2005), 35.   Google Scholar

[2]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431.   Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition,, Pure and Applied Mathematics (Amsterdam), 140 (2003).   Google Scholar

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, SIAM Rev., 18 (1976), 620.   Google Scholar

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators,", Lecture Notes in Mathematics, 1184 (1986).   Google Scholar

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics,, J. Math. Biol., 35 (1997), 967.   Google Scholar

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment,, Math. Models Methods Appl. Sci., 16 (2006), 1695.   Google Scholar

[8]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705.   Google Scholar

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMS-NSF Regional Conference Series in Applied Mathematics, 71 (1998).   Google Scholar

[10]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985).   Google Scholar

[11]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000).   Google Scholar

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations,, Math. Model. Nat. Phenom., 5 (2010), 94.   Google Scholar

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model,, J. Math. Anal. Appl., 328 (2007), 119.   Google Scholar

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback,, Commun. Pure Appl. Anal., 8 (2009), 1825.   Google Scholar

[15]

J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639.   Google Scholar

[16]

J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth,, Positivity, 14 (2010), 501.   Google Scholar

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution,, Japan J. Appl. Math., 7 (1990), 433.   Google Scholar

[18]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,, Arch. Rational Mech. Anal., 54 (1974), 281.   Google Scholar

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.   Google Scholar

[20]

S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition,, J. Math. Anal. Appl., 280 (2003), 102.   Google Scholar

[21]

S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time,, J. Difference Equ. Appl., 11 (2005), 95.   Google Scholar

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations,, Trans. Amer. Math. Soc., 347 (1995), 2851.   Google Scholar

[23]

J. A. J. Metz and O. Diekmann, Age dependence,, in, 68 (1983).   Google Scholar

[24]

J. Prüss, On the qualitative behavior of populations with age-specific interactions,, Comput. Math. Appl., 9 (1983), 327.   Google Scholar

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables,, SIAM J. Appl. Math., 48 (1988), 549.   Google Scholar

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models,, J. Diff. Eq., 248 (2010), 1756.   Google Scholar

[27]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,", Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985).   Google Scholar

[28]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980).   Google Scholar

[1]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[4]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[5]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[6]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[7]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[8]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[9]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[15]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[16]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[17]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[18]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[19]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[20]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]