• Previous Article
    Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay
January  2012, 17(1): 303-323. doi: 10.3934/dcdsb.2012.17.303

A passivity-based stability criterion for reaction diffusion systems with interconnected structure

1. 

Department of Mathematics, California State University, 5151 State University Dr., Los Angeles, CA 90032-8204, United States

Received  May 2010 Revised  April 2011 Published  October 2011

In this paper, stability of a class of reaction diffusion systems is studied. Conditions on global asymptotic stability of the homogeneous equilibrium are derived based on the diagonal stability of a dissipativity matrix. This work extends previous result on global asymptotic stability from cyclic systems to general systems with interconnected structure. In addition, it reformulates the approach using an "input-output" formalism that makes the results easier to understand and apply. A biological example from the Mitogen-Activated Protein Kinase (MAPK) system is provided at the end to illustrate the new approach and the main result.
Citation: Liming Wang. A passivity-based stability criterion for reaction diffusion systems with interconnected structure. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 303-323. doi: 10.3934/dcdsb.2012.17.303
References:
[1]

S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method,, J. Phys. A, 40 (2007), 12335. doi: 10.1088/1751-8113/40/41/005. Google Scholar

[2]

M. Arcak and E. D. Sontag, A passivity-based stability criterion for a class of biochemical reaction networks,, Mathematical Biosciences and Engineering, 5 (2008), 1. doi: 10.3934/mbe.2008.5.1. Google Scholar

[3]

L. Edelstein-Keshet, "Mathematical Models in Biology,", Reprint of the 1988 original, 46 (1988). Google Scholar

[4]

W. B. Fitzgibbon, S. L. Hollis and J. J. Morgan, Stability and Lyapunov functions for reaction-diffusion systems,, SIAM J. Math. Anal., 28 (1997), 595. doi: 10.1137/S0036141094272241. Google Scholar

[5]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Nones in Mathematics, 840 (1981). Google Scholar

[6]

M. R. Jovanović, M. Arcak and E. D. Sontag, A passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure,, IEEE Transactions on Circuits and Systems I. Regul. Pap., 2008 (): 75. Google Scholar

[7]

B. N. Kholodenko, Cell-signalling dynamics in time and space,, Nat. Rev. Mol. Cell. Biol., 7 (2006), 165. doi: 10.1038/nrm1838. Google Scholar

[8]

Y. Lou, T. Nagylaki and W.-M. Ni, On diffusion-induced blowups in a mutualistic model,, Nonlinear Analysis, 45 (2001), 329. doi: 10.1016/S0362-546X(99)00346-6. Google Scholar

[9]

S. Malham and J. Xin, Global solutions to a reactive Boussinesq system with front data on an infinite domain,, Comm. Math. Phys., 193 (1998), 287. doi: 10.1007/s002200050330. Google Scholar

[10]

J. Morgan, Global existence for semilinear parabolic systems,, SIAM J. Math. Anal., 20 (1989), 1128. doi: 10.1137/0520075. Google Scholar

[11]

J. Morgan, Boundedness and decay results for reaction-diffusion systems,, SIAM J. Math. Anal., 21 (1990), 1172. doi: 10.1137/0521064. Google Scholar

[12]

P. J. Moylan and D. J. Hill, Stability criteria for large-scale systems,, IEEE Trans. Autom. Control, 23 (1978), 143. doi: 10.1109/TAC.1978.1101721. Google Scholar

[13]

J. Murray, "Mathematical Biology,", Biomathematics, 19 (1989). Google Scholar

[14]

H. Othmer and E. Pate, Scale-invariance in reaction-diffusion models of spatial pattern formation,, Proc. Natl. Acad. Sci., 77 (1980), 4180. doi: 10.1073/pnas.77.7.4180. Google Scholar

[15]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Review, 42 (2000), 93. doi: 10.1137/S0036144599359735. Google Scholar

[16]

R. Redheffer, R. Redlinger and W. Walter, A theorem of La Salle-Lyapunov type for parabolic systems,, SIAM J. Math. Anal., 19 (1988), 121. Google Scholar

[17]

W. Rudin, "Real and Complex Analysis,", Third edition, (1987). Google Scholar

[18]

S. D. M. Santos, P. J. Verveer and P. I. H. Bastiaens, Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate,, Nature Cell Biology, 9 (2007), 324. doi: 10.1038/ncb1543. Google Scholar

[19]

H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995). Google Scholar

[20]

M. K. Sundareshan and M. Vidyasagar, $L^2$-stability of large-scale dynamical systems: Criteria via positive operator theory,, IEEE Transactions on Automatic Control, AC-22 (1977), 396. Google Scholar

[21]

A. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. B, 273 (1952), 37. doi: 10.1098/rstb.1952.0012. Google Scholar

[22]

M. Vidyasagar, "Input-Output Analysis of Large-Scale Interconnected Systems. Decomposition, Well-Posedness and Stability,", Lecture Notes in Control and Information Sciences, 29 (1981). Google Scholar

[23]

R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis,", Pure and Applied Mathematics, (1977). Google Scholar

[24]

J. C. Willems, Dissipative dynamical systems. I. General Theory; Part II: Linear systems with quadratic supply rates,, Archive for Rational Mechanics and Analysis, 45 (1972), 321. Google Scholar

show all references

References:
[1]

S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method,, J. Phys. A, 40 (2007), 12335. doi: 10.1088/1751-8113/40/41/005. Google Scholar

[2]

M. Arcak and E. D. Sontag, A passivity-based stability criterion for a class of biochemical reaction networks,, Mathematical Biosciences and Engineering, 5 (2008), 1. doi: 10.3934/mbe.2008.5.1. Google Scholar

[3]

L. Edelstein-Keshet, "Mathematical Models in Biology,", Reprint of the 1988 original, 46 (1988). Google Scholar

[4]

W. B. Fitzgibbon, S. L. Hollis and J. J. Morgan, Stability and Lyapunov functions for reaction-diffusion systems,, SIAM J. Math. Anal., 28 (1997), 595. doi: 10.1137/S0036141094272241. Google Scholar

[5]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Nones in Mathematics, 840 (1981). Google Scholar

[6]

M. R. Jovanović, M. Arcak and E. D. Sontag, A passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure,, IEEE Transactions on Circuits and Systems I. Regul. Pap., 2008 (): 75. Google Scholar

[7]

B. N. Kholodenko, Cell-signalling dynamics in time and space,, Nat. Rev. Mol. Cell. Biol., 7 (2006), 165. doi: 10.1038/nrm1838. Google Scholar

[8]

Y. Lou, T. Nagylaki and W.-M. Ni, On diffusion-induced blowups in a mutualistic model,, Nonlinear Analysis, 45 (2001), 329. doi: 10.1016/S0362-546X(99)00346-6. Google Scholar

[9]

S. Malham and J. Xin, Global solutions to a reactive Boussinesq system with front data on an infinite domain,, Comm. Math. Phys., 193 (1998), 287. doi: 10.1007/s002200050330. Google Scholar

[10]

J. Morgan, Global existence for semilinear parabolic systems,, SIAM J. Math. Anal., 20 (1989), 1128. doi: 10.1137/0520075. Google Scholar

[11]

J. Morgan, Boundedness and decay results for reaction-diffusion systems,, SIAM J. Math. Anal., 21 (1990), 1172. doi: 10.1137/0521064. Google Scholar

[12]

P. J. Moylan and D. J. Hill, Stability criteria for large-scale systems,, IEEE Trans. Autom. Control, 23 (1978), 143. doi: 10.1109/TAC.1978.1101721. Google Scholar

[13]

J. Murray, "Mathematical Biology,", Biomathematics, 19 (1989). Google Scholar

[14]

H. Othmer and E. Pate, Scale-invariance in reaction-diffusion models of spatial pattern formation,, Proc. Natl. Acad. Sci., 77 (1980), 4180. doi: 10.1073/pnas.77.7.4180. Google Scholar

[15]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Review, 42 (2000), 93. doi: 10.1137/S0036144599359735. Google Scholar

[16]

R. Redheffer, R. Redlinger and W. Walter, A theorem of La Salle-Lyapunov type for parabolic systems,, SIAM J. Math. Anal., 19 (1988), 121. Google Scholar

[17]

W. Rudin, "Real and Complex Analysis,", Third edition, (1987). Google Scholar

[18]

S. D. M. Santos, P. J. Verveer and P. I. H. Bastiaens, Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate,, Nature Cell Biology, 9 (2007), 324. doi: 10.1038/ncb1543. Google Scholar

[19]

H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995). Google Scholar

[20]

M. K. Sundareshan and M. Vidyasagar, $L^2$-stability of large-scale dynamical systems: Criteria via positive operator theory,, IEEE Transactions on Automatic Control, AC-22 (1977), 396. Google Scholar

[21]

A. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. B, 273 (1952), 37. doi: 10.1098/rstb.1952.0012. Google Scholar

[22]

M. Vidyasagar, "Input-Output Analysis of Large-Scale Interconnected Systems. Decomposition, Well-Posedness and Stability,", Lecture Notes in Control and Information Sciences, 29 (1981). Google Scholar

[23]

R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis,", Pure and Applied Mathematics, (1977). Google Scholar

[24]

J. C. Willems, Dissipative dynamical systems. I. General Theory; Part II: Linear systems with quadratic supply rates,, Archive for Rational Mechanics and Analysis, 45 (1972), 321. Google Scholar

[1]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[2]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[3]

Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423

[4]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[5]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[6]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[7]

Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191

[8]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[9]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[10]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[11]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[12]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[13]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[14]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

[15]

Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205

[16]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[17]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[18]

Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69

[19]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[20]

Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]