2012, 17(2): 487-507. doi: 10.3934/dcdsb.2012.17.487

Vector-valued obstacle problems for non-local energies

1. 

Dip. Mat. “U. Dini”, Università di Firenze, V.le Morgagni 67/A, I-50134 Firenze

Received  November 2010 Revised  March 2011 Published  December 2011

We investigate the asymptotics of obstacle problems for non-local energies in a vector-valued setting. Motivations arise, in particular, in phase field models for ferroelectric materials and variational theories for dislocations.
Citation: Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487
References:
[1]

R. A. Adams, "Lecture Notes on $L^p$-Potential Theory,'', Department of Math., (1981).

[2]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media,, J. Math. Pures Appl. (9), 81 (2002), 439. doi: 10.1016/S0021-7824(01)01226-0.

[3]

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces,, in, (2001), 439.

[4]

A. Braides, "$\Gamma$-Convergence for Beginners,'', Oxford Lecture Series in Mathematics and its Applications, 22 (2002).

[5]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'', Oxford Lecture Series in Mathematics and its Applications, 12 (1998).

[6]

H. Brezis, How to recognize constant functions. A connection with Sobolev spaces,, Russian Math. Surveys, 57 (2002), 693. doi: 10.1070/RM2002v057n04ABEH000533.

[7]

H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries,, Selecta Math. (N.S.), 1 (1995), 197.

[8]

L. Caffarelli and A. Mellet, Random homogenization of an obstacle problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 375.

[9]

L. Caffarelli and A. Mellet, Random homogenization of fractional obstacle problems,, Netw. Heterog. Media, 3 (2008), 523. doi: 10.3934/nhm.2008.3.523.

[10]

L. Caffarelli and L. Silvestre, An extension problem related to fractional Laplacians,, Comm. Partial Differential Equations, 32 (2007), 1245.

[11]

S. Conti, A. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models,, Arch. Rational Mech. Anal., 199 (2011), 779. doi: 10.1007/s00205-010-0333-7.

[12]

Ş. Costea, Strong $A_\infty$-weights and scaling invariant Besov capacities,, Rev. Mat. Iberoam., 23 (2007), 1067.

[13]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,'', Progress in Nonlinear Differential Equations and their Applications, 8 (1993).

[14]

F. Daví and P. M. Mariano, Evolution of domain walls in ferroelectric solids,, J. Mech. Phys. Solids, 49 (2001), 1701. doi: 10.1016/S0022-5096(01)00014-X.

[15]

M. Focardi, Homogenization of random fractional obstacle problems via $\Gamma$-convergence,, Comm. Partial Differential Equations, 34 (2009), 1607.

[16]

M. Focardi, Aperiodic fractional obstacle problems,, Adv. Math., 225 (2010), 3502. doi: 10.1016/j.aim.2010.06.014.

[17]

M. Focardi and A. Garroni, A $1D$ macroscopic phase field model for dislocations and a second order $\Gamma$-limit,, Multiscale Model. Simul., 6 (2007), 1098.

[18]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations,, SIAM J. Math. Anal., 36 (2005), 1943.

[19]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit,, Arch. Ration. Mech. Anal., 181 (2006), 535. doi: 10.1007/s00205-006-0432-7.

[20]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,'', Oxford Mathematical Monographs, (1993).

[21]

M. Koslowski, A. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals,, J. Mech. Phys. Solids, 50 (2002), 2597. doi: 10.1016/S0022-5096(02)00037-6.

[22]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, preprint, ().

[23]

M. Senechal, "Quasicrystals and Geometry,'', Cambridge University Press, (1995).

[24]

L. Sigalotti, Asymptotic analysis of periodically-perforated nonlinear media at the critical exponent,, Commun. Contemp. Math., 11 (2009), 1009. doi: 10.1142/S0219199709003648.

[25]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'', North-Holland Mathematical Library, 18 (1978).

show all references

References:
[1]

R. A. Adams, "Lecture Notes on $L^p$-Potential Theory,'', Department of Math., (1981).

[2]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media,, J. Math. Pures Appl. (9), 81 (2002), 439. doi: 10.1016/S0021-7824(01)01226-0.

[3]

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces,, in, (2001), 439.

[4]

A. Braides, "$\Gamma$-Convergence for Beginners,'', Oxford Lecture Series in Mathematics and its Applications, 22 (2002).

[5]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'', Oxford Lecture Series in Mathematics and its Applications, 12 (1998).

[6]

H. Brezis, How to recognize constant functions. A connection with Sobolev spaces,, Russian Math. Surveys, 57 (2002), 693. doi: 10.1070/RM2002v057n04ABEH000533.

[7]

H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries,, Selecta Math. (N.S.), 1 (1995), 197.

[8]

L. Caffarelli and A. Mellet, Random homogenization of an obstacle problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 375.

[9]

L. Caffarelli and A. Mellet, Random homogenization of fractional obstacle problems,, Netw. Heterog. Media, 3 (2008), 523. doi: 10.3934/nhm.2008.3.523.

[10]

L. Caffarelli and L. Silvestre, An extension problem related to fractional Laplacians,, Comm. Partial Differential Equations, 32 (2007), 1245.

[11]

S. Conti, A. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models,, Arch. Rational Mech. Anal., 199 (2011), 779. doi: 10.1007/s00205-010-0333-7.

[12]

Ş. Costea, Strong $A_\infty$-weights and scaling invariant Besov capacities,, Rev. Mat. Iberoam., 23 (2007), 1067.

[13]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,'', Progress in Nonlinear Differential Equations and their Applications, 8 (1993).

[14]

F. Daví and P. M. Mariano, Evolution of domain walls in ferroelectric solids,, J. Mech. Phys. Solids, 49 (2001), 1701. doi: 10.1016/S0022-5096(01)00014-X.

[15]

M. Focardi, Homogenization of random fractional obstacle problems via $\Gamma$-convergence,, Comm. Partial Differential Equations, 34 (2009), 1607.

[16]

M. Focardi, Aperiodic fractional obstacle problems,, Adv. Math., 225 (2010), 3502. doi: 10.1016/j.aim.2010.06.014.

[17]

M. Focardi and A. Garroni, A $1D$ macroscopic phase field model for dislocations and a second order $\Gamma$-limit,, Multiscale Model. Simul., 6 (2007), 1098.

[18]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations,, SIAM J. Math. Anal., 36 (2005), 1943.

[19]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit,, Arch. Ration. Mech. Anal., 181 (2006), 535. doi: 10.1007/s00205-006-0432-7.

[20]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,'', Oxford Mathematical Monographs, (1993).

[21]

M. Koslowski, A. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals,, J. Mech. Phys. Solids, 50 (2002), 2597. doi: 10.1016/S0022-5096(02)00037-6.

[22]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, preprint, ().

[23]

M. Senechal, "Quasicrystals and Geometry,'', Cambridge University Press, (1995).

[24]

L. Sigalotti, Asymptotic analysis of periodically-perforated nonlinear media at the critical exponent,, Commun. Contemp. Math., 11 (2009), 1009. doi: 10.1142/S0219199709003648.

[25]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'', North-Holland Mathematical Library, 18 (1978).

[1]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[2]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[3]

Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653

[4]

Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465

[5]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[6]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[7]

Dirk Frettlöh, Christoph Richard. Dynamical properties of almost repetitive Delone sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 531-556. doi: 10.3934/dcds.2014.34.531

[8]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[9]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[10]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[11]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[12]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[13]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[14]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[15]

Michael Herty, Reinhard Illner. Coupling of non-local driving behaviour with fundamental diagrams. Kinetic & Related Models, 2012, 5 (4) : 843-855. doi: 10.3934/krm.2012.5.843

[16]

Nikolai Dokuchaev. On forward and backward SPDEs with non-local boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5335-5351. doi: 10.3934/dcds.2015.35.5335

[17]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[18]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[19]

Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 0 (0) : 1-17. doi: 10.3934/dcds.2018154

[20]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]