2012, 17(3): 871-914. doi: 10.3934/dcdsb.2012.17.871

Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential

1. 

Institute of Mathematics, UMCS 20-031, Lublin, Poland and IMPAN 00-956 Warsaw, Poland

2. 

Department of Mathematics, Stanford University, Stanford, CA 94305

Received  July 2010 Revised  February 2011 Published  January 2012

We consider energy fluctuations for solutions of the Schrödinger equation with an Ornstein-Uhlenbeck random potential when the initial data is spatially localized. The limit of the fluctuations of the Wigner transform satisfies a kinetic equation with random initial data. This result generalizes that of [12] where the random potential was assumed to be white noise in time.
Citation: Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871
References:
[1]

G. Bal, G. Papanicolaou and L. Ryzhik, Radiative transport limit for the random Schroedinger equation,, Nonlinearity, 15 (2002), 513. doi: 10.1088/0951-7715/15/2/315.

[2]

G. Bal, L. Carin, D. Liu and K. Ren, Experimental validation of a transport-based imaging method in highly scattering environments,, Inverse Problems, 26 (2007), 2527. doi: 10.1088/0266-5611/23/6/015.

[3]

G. Bal, D. Liu, S. Vasudevan, J. Krolik and L. Carin, Electromagnetic time-reversal imaging in changing media: Experiment and analysis,, IEEE Trans. Anten. and Prop., 55 (2007), 344. doi: 10.1109/TAP.2006.889807.

[4]

G. Bal and O. Pinaud, Kinetic models for imaging in random media,, Multiscale Model. Simul., 6 (2007), 792. doi: 10.1137/060678464.

[5]

G. Bal and O. Pinaud, Self-averaging of kinetic models for waves in random media,, Kinet. Relat. Models, 1 (2008), 85. doi: 10.3934/krm.2008.1.85.

[6]

G. Bal and O. Pinaud, Dynamics of wave scintillation in random media,, Comm. PDEs, 35 (2010), 1176. doi: 10.1080/03605301003801557.

[7]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Encyclopedia of Mathematics and its Applications, 44 (1992).

[8]

L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation,, Comm. Pure Appl. Math., 53 (2000), 667.

[9]

A. Fannjiang, Self-averaging scaling limits for random parabolic waves,, Arch. Rational Mech. Anal., 175 (2005), 343. doi: 10.1007/s00205-004-0343-4.

[10]

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 323. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

[11]

C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320 (1999).

[12]

T. Komorowski, Sz. Peszat and L. Ryzhik, Limit of fluctuations of solutions of Wigner equation,, Comm. Math. Phys., 292 (2009), 479. doi: 10.1007/s00220-009-0895-0.

[13]

M. Ledoux and M. Talagrand, "Probability in Banach Spaces. Isoperimetry and Processes,", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23 (1991).

[14]

I. Mitoma, Tightness of probabilities On $C([ 0, 1 ]; \mathcalS)$ and $D([ 0, 1 ]; \mathcalS)$,, Ann. Probab., 11 (1983), 989. doi: 10.1214/aop/1176993447.

[15]

L. Ryzhik, G. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media,, Wave Motion, 24 (1996), 327. doi: 10.1016/S0165-2125(96)00021-2.

[16]

H. Spohn, Derivation of the transport equation for electrons moving through random impurities,, Jour. Stat. Phys., 17 (1977), 385. doi: 10.1007/BF01014347.

show all references

References:
[1]

G. Bal, G. Papanicolaou and L. Ryzhik, Radiative transport limit for the random Schroedinger equation,, Nonlinearity, 15 (2002), 513. doi: 10.1088/0951-7715/15/2/315.

[2]

G. Bal, L. Carin, D. Liu and K. Ren, Experimental validation of a transport-based imaging method in highly scattering environments,, Inverse Problems, 26 (2007), 2527. doi: 10.1088/0266-5611/23/6/015.

[3]

G. Bal, D. Liu, S. Vasudevan, J. Krolik and L. Carin, Electromagnetic time-reversal imaging in changing media: Experiment and analysis,, IEEE Trans. Anten. and Prop., 55 (2007), 344. doi: 10.1109/TAP.2006.889807.

[4]

G. Bal and O. Pinaud, Kinetic models for imaging in random media,, Multiscale Model. Simul., 6 (2007), 792. doi: 10.1137/060678464.

[5]

G. Bal and O. Pinaud, Self-averaging of kinetic models for waves in random media,, Kinet. Relat. Models, 1 (2008), 85. doi: 10.3934/krm.2008.1.85.

[6]

G. Bal and O. Pinaud, Dynamics of wave scintillation in random media,, Comm. PDEs, 35 (2010), 1176. doi: 10.1080/03605301003801557.

[7]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Encyclopedia of Mathematics and its Applications, 44 (1992).

[8]

L. Erdös and H.-T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation,, Comm. Pure Appl. Math., 53 (2000), 667.

[9]

A. Fannjiang, Self-averaging scaling limits for random parabolic waves,, Arch. Rational Mech. Anal., 175 (2005), 343. doi: 10.1007/s00205-004-0343-4.

[10]

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 323. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

[11]

C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320 (1999).

[12]

T. Komorowski, Sz. Peszat and L. Ryzhik, Limit of fluctuations of solutions of Wigner equation,, Comm. Math. Phys., 292 (2009), 479. doi: 10.1007/s00220-009-0895-0.

[13]

M. Ledoux and M. Talagrand, "Probability in Banach Spaces. Isoperimetry and Processes,", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23 (1991).

[14]

I. Mitoma, Tightness of probabilities On $C([ 0, 1 ]; \mathcalS)$ and $D([ 0, 1 ]; \mathcalS)$,, Ann. Probab., 11 (1983), 989. doi: 10.1214/aop/1176993447.

[15]

L. Ryzhik, G. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media,, Wave Motion, 24 (1996), 327. doi: 10.1016/S0165-2125(96)00021-2.

[16]

H. Spohn, Derivation of the transport equation for electrons moving through random impurities,, Jour. Stat. Phys., 17 (1977), 385. doi: 10.1007/BF01014347.

[1]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[2]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[3]

Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic & Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217

[4]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[5]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[6]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[7]

Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic & Related Models, 2019, 12 (1) : 59-77. doi: 10.3934/krm.2019003

[8]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[9]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[10]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[11]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[12]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[13]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[14]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[15]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[16]

Bertram Düring, Ansgar Jüngel, Lara Trussardi. A kinetic equation for economic value estimation with irrationality and herding. Kinetic & Related Models, 2017, 10 (1) : 239-261. doi: 10.3934/krm.2017010

[17]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic & Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[18]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[19]

Stephen McDowall, Plamen Stefanov, Alexandru Tamasan. Gauge equivalence in stationary radiative transport through media with varying index of refraction. Inverse Problems & Imaging, 2010, 4 (1) : 151-167. doi: 10.3934/ipi.2010.4.151

[20]

Sebastian Acosta. Recovery of the absorption coefficient in radiative transport from a single measurement. Inverse Problems & Imaging, 2015, 9 (2) : 289-300. doi: 10.3934/ipi.2015.9.289

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]