2012, 17(3): 933-942. doi: 10.3934/dcdsb.2012.17.933

Spiral rotating waves of a geodesic curvature flow on the unit sphere

1. 

Department of Mathematics, Tongji University, Shanghai 200092

Received  December 2010 Revised  July 2011 Published  January 2012

This paper is concerned with a geodesic curvature flow on the unit sphere. In each zone between the equator and the circle with latitude $\theta_0 \in (0, \frac{\pi}{2} ]$, we give the existence and uniqueness of a spiral rotating wave of the geodesic curvature flow.
Citation: Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933
References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. doi: 10.1016/j.jde.2008.01.014.

[2]

S. J. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geom., 34 (1991), 491.

[3]

F. Amdjadi and J. Gomatam, Spiral waves on static and moving spherical domains, J., Comput. Appl. Math., 182 (2005), 472. doi: 10.1016/j.cam.2004.12.027.

[4]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E.

[5]

K.-S. Chou and X.-P. Zhu, "The Curve Shorting Problem,", Chapman & Hall/CRC, (2001). doi: 10.1201/9781420035704.

[6]

P. C. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).

[7]

J. Gomatam and F. Amdjadi, Reaction-diffusion equations on a sphere: Meandering of spiral waves,, Physical Review E (3), 56 (1997), 3913.

[8]

R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media,, Japan J. Indust. Appl. Math., 15 (1998), 317. doi: 10.1007/BF03167407.

[9]

J. P. Keener, The core of the spiral,, SIAM J. Appl. Math., 52 (1992), 1370. doi: 10.1137/0152079.

[10]

J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinski reaction,, Phys. D, 21 (1986), 307. doi: 10.1016/0167-2789(86)90007-2.

[11]

B. Lou, Periodic rotating waves of a geodesic curvature flow on the sphere,, Commun. Partial Differential Equations, 32 (2007), 525. doi: 10.1080/03605300701249663.

[12]

B. D. Lou and L. Zhou, Singular limit of FitzHugh-Nagumo equations on a sphere,, ZAMM Z. Angew. Math. Mech., 88 (2008), 644. doi: 10.1002/zamm.200700144.

[13]

H. Matano, K.-I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537. doi: 10.3934/nhm.2006.1.537.

[14]

K.-I. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 95 (1999), 1165. doi: 10.1023/A:1004518904533.

[15]

T. Ogiwara and K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a model of spiral crystal growth,, Publ. Res. Inst. Math. Sci., 39 (2003), 767. doi: 10.2977/prims/1145476046.

show all references

References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505. doi: 10.1016/j.jde.2008.01.014.

[2]

S. J. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geom., 34 (1991), 491.

[3]

F. Amdjadi and J. Gomatam, Spiral waves on static and moving spherical domains, J., Comput. Appl. Math., 182 (2005), 472. doi: 10.1016/j.cam.2004.12.027.

[4]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E.

[5]

K.-S. Chou and X.-P. Zhu, "The Curve Shorting Problem,", Chapman & Hall/CRC, (2001). doi: 10.1201/9781420035704.

[6]

P. C. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).

[7]

J. Gomatam and F. Amdjadi, Reaction-diffusion equations on a sphere: Meandering of spiral waves,, Physical Review E (3), 56 (1997), 3913.

[8]

R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media,, Japan J. Indust. Appl. Math., 15 (1998), 317. doi: 10.1007/BF03167407.

[9]

J. P. Keener, The core of the spiral,, SIAM J. Appl. Math., 52 (1992), 1370. doi: 10.1137/0152079.

[10]

J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinski reaction,, Phys. D, 21 (1986), 307. doi: 10.1016/0167-2789(86)90007-2.

[11]

B. Lou, Periodic rotating waves of a geodesic curvature flow on the sphere,, Commun. Partial Differential Equations, 32 (2007), 525. doi: 10.1080/03605300701249663.

[12]

B. D. Lou and L. Zhou, Singular limit of FitzHugh-Nagumo equations on a sphere,, ZAMM Z. Angew. Math. Mech., 88 (2008), 644. doi: 10.1002/zamm.200700144.

[13]

H. Matano, K.-I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537. doi: 10.3934/nhm.2006.1.537.

[14]

K.-I. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 95 (1999), 1165. doi: 10.1023/A:1004518904533.

[15]

T. Ogiwara and K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a model of spiral crystal growth,, Publ. Res. Inst. Math. Sci., 39 (2003), 767. doi: 10.2977/prims/1145476046.

[1]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[2]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[3]

Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881

[4]

Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure & Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975

[5]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[6]

Mark Pollicott. Closed geodesic distribution for manifolds of non-positive curvature. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 153-161. doi: 10.3934/dcds.1996.2.153

[7]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[8]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[9]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[10]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[11]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[12]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[13]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[14]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. Linearized stationary incompressible flow around rotating and translating bodies -- Leray solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 967-979. doi: 10.3934/dcdss.2014.7.967

[15]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[16]

Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940

[17]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[18]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[19]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Erratum to: Ghost effect by curvature in planar Couette flow [1]. Kinetic & Related Models, 2012, 5 (3) : 669-672. doi: 10.3934/krm.2012.5.669

[20]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure & Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]