August  2013, 18(6): 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

Exponential stability for a class of linear hyperbolic equations with hereditary memory

1. 

Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano

2. 

Politecnico di Milano - Dipartimento di Matematica “F. Brioschi”, Via Bonardi 9, 20133 Milano, Italy

Received  June 2011 Revised  November 2011 Published  March 2013

We establish a necessary and sufficient condition of exponential stability for the contraction semigroup generated by an abstract version of the linear differential equation $$∂_t u(t)-\int_0^\infty k(s)\Delta u(t-s)ds = 0 $$ modeling hereditary heat conduction of Gurtin-Pipkin type.
Citation: Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555
References:
[1]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptot. Anal., 50 (2006), 269.   Google Scholar

[2]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, Asymptot. Anal., 46 (2006), 251.   Google Scholar

[3]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 297.   Google Scholar

[4]

B. R. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process,, SIAM J. Math. Anal., 33 (2002), 1090.  doi: 10.1137/S0036141001388592.  Google Scholar

[5]

M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids,, Arch. Rational Mech. Anal., 116 (1991), 139.  doi: 10.1007/BF00375589.  Google Scholar

[6]

D. Fargue, Réductibilité des systèmes héréditaires à des systèmes dynamiques (régis par des équations différentielles ou aux dérivées partielles),, C. R. Acad. Sci. Paris Sér. A-B, 277 (1973).   Google Scholar

[7]

C. Giorgi, M. G. Naso and V. Pata, Exponential stability in linear heat conduction with memory: a semigroup approach,, Comm. Appl. Anal., 5 (2001), 121.   Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speed,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

E. Hewitt and K. Stromberg, "Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable,", Springer-Verlag, (1965).   Google Scholar

[10]

T. Hillen and K. P. Hadeler, Hyperbolic systems and transport equations in mathematical biology,, in, (2005), 257.  doi: 10.1007/3-540-27907-5_11.  Google Scholar

[11]

Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems,", Chapman & Hall/CRC Research Notes in Mathematics, 398 (1999).   Google Scholar

[12]

V. Méndez, J. Fort and J. Farjas, Speed of wave-front solutions to hyperbolic reaction-diffusion equations,, Phys. Rev. E (3), 60 (1999), 5231.  doi: 10.1103/PhysRevE.60.5231.  Google Scholar

[13]

V. Méndez and J. E. Llebot, Hyperbolic reaction-diffusion equations for a forest fire model,, Phys. Rev. E (3), 56 (1997), 6557.  doi: 10.1103/PhysRevE.56.6557.  Google Scholar

[14]

J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity,, Quart. Appl. Math., 52 (1994), 628.   Google Scholar

[15]

W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory,, SIAM J. Appl. Math., 46 (1986), 171.  doi: 10.1137/0146013.  Google Scholar

[16]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels,, Commun. Pure Appl. Anal., 9 (2010), 721.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[17]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[18]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

show all references

References:
[1]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptot. Anal., 50 (2006), 269.   Google Scholar

[2]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, Asymptot. Anal., 46 (2006), 251.   Google Scholar

[3]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 297.   Google Scholar

[4]

B. R. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process,, SIAM J. Math. Anal., 33 (2002), 1090.  doi: 10.1137/S0036141001388592.  Google Scholar

[5]

M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids,, Arch. Rational Mech. Anal., 116 (1991), 139.  doi: 10.1007/BF00375589.  Google Scholar

[6]

D. Fargue, Réductibilité des systèmes héréditaires à des systèmes dynamiques (régis par des équations différentielles ou aux dérivées partielles),, C. R. Acad. Sci. Paris Sér. A-B, 277 (1973).   Google Scholar

[7]

C. Giorgi, M. G. Naso and V. Pata, Exponential stability in linear heat conduction with memory: a semigroup approach,, Comm. Appl. Anal., 5 (2001), 121.   Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speed,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

E. Hewitt and K. Stromberg, "Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable,", Springer-Verlag, (1965).   Google Scholar

[10]

T. Hillen and K. P. Hadeler, Hyperbolic systems and transport equations in mathematical biology,, in, (2005), 257.  doi: 10.1007/3-540-27907-5_11.  Google Scholar

[11]

Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems,", Chapman & Hall/CRC Research Notes in Mathematics, 398 (1999).   Google Scholar

[12]

V. Méndez, J. Fort and J. Farjas, Speed of wave-front solutions to hyperbolic reaction-diffusion equations,, Phys. Rev. E (3), 60 (1999), 5231.  doi: 10.1103/PhysRevE.60.5231.  Google Scholar

[13]

V. Méndez and J. E. Llebot, Hyperbolic reaction-diffusion equations for a forest fire model,, Phys. Rev. E (3), 56 (1997), 6557.  doi: 10.1103/PhysRevE.56.6557.  Google Scholar

[14]

J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity,, Quart. Appl. Math., 52 (1994), 628.   Google Scholar

[15]

W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory,, SIAM J. Appl. Math., 46 (1986), 171.  doi: 10.1137/0146013.  Google Scholar

[16]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels,, Commun. Pure Appl. Anal., 9 (2010), 721.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[17]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[18]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.  doi: 10.2307/1999112.  Google Scholar

[1]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[2]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[3]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[4]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[8]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[9]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[17]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[20]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]