-
Previous Article
Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions
- DCDS-B Home
- This Issue
-
Next Article
Exponential stability for a class of linear hyperbolic equations with hereditary memory
Asymptotic behaviour for a class of delayed cooperative models with patch structure
1. | Departamento de Matemática and CMAF, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal |
References:
[1] |
T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays,, Nonlinear Anal., 74 (2011), 7033.
doi: 10.1016/j.na.2011.07.024. |
[2] |
T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049.
doi: 10.1016/j.jde.2007.12.005. |
[3] |
T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.
doi: 10.1088/0951-7715/23/10/006. |
[4] |
M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics,", Martinus Nijhoff Publ., (1986).
doi: 10.1007/978-94-009-4335-3. |
[5] |
B. Liu, Global stability of a class of delay differential systems,, J. Comput. Appl. Math., 233 (2009), 217.
doi: 10.1016/j.cam.2009.07.024. |
[6] |
H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).
|
[7] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).
doi: 10.1017/CBO9780511530043. |
[8] |
Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss,, Math. Biosci., 201 (2006), 143.
doi: 10.1016/j.mbs.2005.12.012. |
[9] |
Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure,, Nonlinear Anal. Real World Appl., 7 (2006), 235.
doi: 10.1016/j.nonrwa.2005.02.005. |
[10] |
W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models,, J. Math. Anal. Appl., 211 (1997), 498.
doi: 10.1006/jmaa.1997.5484. |
[11] |
X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Cann. Appl. Math. Quart., 4 (1996), 421.
|
show all references
References:
[1] |
T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays,, Nonlinear Anal., 74 (2011), 7033.
doi: 10.1016/j.na.2011.07.024. |
[2] |
T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049.
doi: 10.1016/j.jde.2007.12.005. |
[3] |
T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.
doi: 10.1088/0951-7715/23/10/006. |
[4] |
M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics,", Martinus Nijhoff Publ., (1986).
doi: 10.1007/978-94-009-4335-3. |
[5] |
B. Liu, Global stability of a class of delay differential systems,, J. Comput. Appl. Math., 233 (2009), 217.
doi: 10.1016/j.cam.2009.07.024. |
[6] |
H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).
|
[7] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).
doi: 10.1017/CBO9780511530043. |
[8] |
Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss,, Math. Biosci., 201 (2006), 143.
doi: 10.1016/j.mbs.2005.12.012. |
[9] |
Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure,, Nonlinear Anal. Real World Appl., 7 (2006), 235.
doi: 10.1016/j.nonrwa.2005.02.005. |
[10] |
W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models,, J. Math. Anal. Appl., 211 (1997), 498.
doi: 10.1006/jmaa.1997.5484. |
[11] |
X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Cann. Appl. Math. Quart., 4 (1996), 421.
|
[1] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[2] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[5] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[6] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[7] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[8] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[9] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[10] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[11] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[12] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[13] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[14] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[15] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[16] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[17] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[18] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[19] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[20] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]