August  2013, 18(6): 1567-1579. doi: 10.3934/dcdsb.2013.18.1567

Asymptotic behaviour for a class of delayed cooperative models with patch structure

1. 

Departamento de Matemática and CMAF, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Received  September 2011 Revised  January 2012 Published  March 2013

For a class of cooperative population models with patch structure and multiple discrete delays, we give conditions for the absolute global asymptotic stability of both the trivial solution and -- when it exists -- a positive equilibrium. Under a sublinearity condition, sharper results are obtained. The existence of positive heteroclinic solutions connecting the two equilibria is also addressed. As a by-product, we obtain a criterion for the existence of positive traveling wave solutions for an associated reaction-diffusion model with patch structure. Our results improve and generalize criteria in the recent literature.
Citation: Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567
References:
[1]

T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays,, Nonlinear Anal., 74 (2011), 7033.  doi: 10.1016/j.na.2011.07.024.  Google Scholar

[2]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049.  doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[3]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.  doi: 10.1088/0951-7715/23/10/006.  Google Scholar

[4]

M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics,", Martinus Nijhoff Publ., (1986).  doi: 10.1007/978-94-009-4335-3.  Google Scholar

[5]

B. Liu, Global stability of a class of delay differential systems,, J. Comput. Appl. Math., 233 (2009), 217.  doi: 10.1016/j.cam.2009.07.024.  Google Scholar

[6]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).   Google Scholar

[7]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[8]

Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss,, Math. Biosci., 201 (2006), 143.  doi: 10.1016/j.mbs.2005.12.012.  Google Scholar

[9]

Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure,, Nonlinear Anal. Real World Appl., 7 (2006), 235.  doi: 10.1016/j.nonrwa.2005.02.005.  Google Scholar

[10]

W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models,, J. Math. Anal. Appl., 211 (1997), 498.  doi: 10.1006/jmaa.1997.5484.  Google Scholar

[11]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Cann. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

show all references

References:
[1]

T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays,, Nonlinear Anal., 74 (2011), 7033.  doi: 10.1016/j.na.2011.07.024.  Google Scholar

[2]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049.  doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[3]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.  doi: 10.1088/0951-7715/23/10/006.  Google Scholar

[4]

M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics,", Martinus Nijhoff Publ., (1986).  doi: 10.1007/978-94-009-4335-3.  Google Scholar

[5]

B. Liu, Global stability of a class of delay differential systems,, J. Comput. Appl. Math., 233 (2009), 217.  doi: 10.1016/j.cam.2009.07.024.  Google Scholar

[6]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).   Google Scholar

[7]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[8]

Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss,, Math. Biosci., 201 (2006), 143.  doi: 10.1016/j.mbs.2005.12.012.  Google Scholar

[9]

Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure,, Nonlinear Anal. Real World Appl., 7 (2006), 235.  doi: 10.1016/j.nonrwa.2005.02.005.  Google Scholar

[10]

W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models,, J. Math. Anal. Appl., 211 (1997), 498.  doi: 10.1006/jmaa.1997.5484.  Google Scholar

[11]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Cann. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[10]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[11]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[12]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[13]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[14]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[15]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[16]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[17]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[18]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[19]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (2970)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]