-
Previous Article
Parameter estimation by quasilinearization in differential equations with state-dependent delays
- DCDS-B Home
- This Issue
-
Next Article
Asymptotic behaviour for a class of delayed cooperative models with patch structure
Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions
1. | Department of Mathematics, Florida International University, Miami, FL, 33199, United States |
2. | Dipartimento di Matematica, Politecnico di Milano, 20133 Milano |
References:
[1] |
A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 663.
doi: 10.1007/s00030-010-0075-0. |
[2] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258. Google Scholar |
[3] |
C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions,, Nonlinear Anal., 72 (2010), 2375.
doi: 10.1016/j.na.2009.11.002. |
[4] |
C. Cavaterra, C. G. Gal and M. Grasselli, Cahn-Hilliard equations with memory and dynamic boundary conditions,, Asymptot. Anal., 71 (2011), 123.
|
[5] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", American Mathematical Society Colloquium Publications, 49 (2002).
|
[6] |
R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions,, Math. Nachr., 13 (2006), 1448.
doi: 10.1002/mana.200410431. |
[7] |
M. Conti and M. Coti Zelati, Attractors for the non-viscous Cahn-Hilliard equation with memory in 2D,, Nonlinear Anal., 72 (2010), 1668.
doi: 10.1016/j.na.2009.09.006. |
[8] |
M. Conti, S. Gatti, M. Grasselli and V. Pata, Two-dimensional reaction-diffusion equations with memory,, Quart. Appl. Math., 68 (2010), 607.
|
[9] |
M. Conti and G. Mola, 3-D viscous Cahn-Hilliard equation with memory,, Math. Meth. Appl. Sci., 32 (2009), 1370.
doi: 10.1002/mma.1091. |
[10] |
M. Conti, V. Pata and M. Squassina, Singular limit of differential system with memory,, Indiana Univ. Math. J., 55 (2006), 169.
doi: 10.1512/iumj.2006.55.2661. |
[11] |
C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 297.
|
[12] |
E. B. Dussan, On the spreading of liquids on solid surfaces: Static and dynamic contact lines,, Ann. Rev. Fluid Mech., 11 (1979), 371. Google Scholar |
[13] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.
doi: 10.1002/mana.200310186. |
[14] |
H. P. Fischer, Ph. Maass and W. Dieterich, Novel surface modes of spinodal decomposition,, Phys. Rev. Letters, 79 (1997), 893. Google Scholar |
[15] |
H. P. Fischer, Ph. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows,, Europhys. Letters, 42 (1998), 49. Google Scholar |
[16] |
C. G. Gal, A Cahn-Hilliard model in bounded domains with permeable walls,, Math. Methods Appl. Sci., 29 (2006), 2009.
doi: 10.1002/mma.757. |
[17] |
C. G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn-Hilliard model with dynamic boundary conditions,, Dyn. Partial Differ. Equ., 5 (2008), 39.
|
[18] |
C. G. Gal, Robust exponential attractors for a conserved Cahn-Hilliard model with singularly perturbed boundary conditions,, Commun. Pure Appl. Anal., 7 (2008), 819.
doi: 10.3934/cpaa.2008.7.819. |
[19] |
C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls,, Electron. J. Differential Equations, 2006 ().
|
[20] |
C. G. Gal, G. R. Goldstein, J. A. Goldstein, S. Romanelli and M. Warma, Fredholm alternative, semilinear elliptic problems, and Wentzell boundary conditions,, submitted., (). Google Scholar |
[21] |
C. G. Gal and A. Miranville, Uniform global attractors for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions,, Nonlinear Anal. Real World Appl., 10 (2009), 1738.
doi: 10.1016/j.nonrwa.2008.02.013. |
[22] |
C. G. Gal and A. Miranville, Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 113.
doi: 10.3934/dcdss.2009.2.113. |
[23] |
C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation,, Discrete Contin. Dyn. Syst., 22 (2008), 1041.
doi: 10.3934/dcds.2008.22.1041. |
[24] |
P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems,, Phys. Rev. E, 71 (2005). Google Scholar |
[25] |
P. Galenko and D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion,, Phys. A, 388 (2009), 3113.
doi: 10.1016/j.physa.2009.04.003. |
[26] |
P. Galenko and V. Lebedev, Analysis of the dispersion relation in spinodal decomposition of a binary system,, Philos. Mag. Lett., 87 (2007), 821. Google Scholar |
[27] |
P. Galenko and V. Lebedev, Local nonequilibrium effect on spinodal decomposition in a binary system,, Int. J. Thermodyn., 11 (2008), 21. Google Scholar |
[28] |
P. Galenko and V. Lebedev, Nonequilibrium effects in spinodal decomposition of a binary system,, Phys. Lett. A, 372 (2008), 985. Google Scholar |
[29] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3D,, Math. Models Methods Appl. Sci., 15 (2005), 165.
doi: 10.1142/S0218202505000327. |
[30] |
S. Gatti, M. Grasselli, A. Miranville, V. Pata, Memory relaxation of first order evolution equations,, Nonlinearity, 18 (2005), 1859.
doi: 10.1088/0951-7715/18/4/023. |
[31] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, Memory relaxation of the one-dimensional Cahn-Hilliard equation,, in, 71 (2006), 101.
doi: 10.1142/9789812774293_0006. |
[32] |
S. Gatti, A. Miranville, V. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory,, Proc. Royal Soc. Edinburgh Sect. A, 140 (2010), 329.
doi: 10.1017/S0308210509000365. |
[33] |
G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions,, Rend. Cl. Sci. Mat. Nat., 141 (2007), 129.
|
[34] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Comm. Pure Appl. Anal., 8 (2009), 881.
doi: 10.3934/cpaa.2009.8.881. |
[35] |
G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls,, Phys. D, 240 (2011), 754.
doi: 10.1016/j.physd.2010.12.007. |
[36] |
M. Grasselli, On the large time behavior of a phase-field system with memory,, Asymptot. Anal., 56 (2008), 229.
|
[37] |
M. Grasselli, V. Pata and F. M. Vegni, Longterm dynamics of a conserved phase-field system with memory,, Asymptot. Anal., 33 (2003), 261.
|
[38] |
M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term,, J. Evol. Equ., 9 (2009), 371.
doi: 10.1007/s00028-009-0017-7. |
[39] |
M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term,, Comm. Partial Differential Equations, 34 (2009), 137.
doi: 10.1080/03605300802608247. |
[40] |
M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term,, Nonlinearity, 23 (2010), 707.
doi: 10.1088/0951-7715/23/3/016. |
[41] |
M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory,, in, 50 (2002), 155.
|
[42] |
M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behaviour of a nonisothermal viscous Cahn-Hilliard equation with inertial term,, J. Differential Equations, 239 (2007), 38.
doi: 10.1016/j.jde.2007.05.003. |
[43] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[44] |
M. B. Kania, Global attractor for the perturbed viscous Cahn-Hilliard equation,, Colloq. Math., 109 (2007), 217.
doi: 10.4064/cm109-2-4. |
[45] |
M. B. Kania, Upper semicontinuity of global attractors for the perturbed viscous Cahn-Hilliard equations,, Topol. Methods Nonlinear Anal., 32 (2008), 327.
|
[46] |
T. Kato, "Perturbation Theory for Linear Operators,", Reprint of the 1980 edition, (1980).
|
[47] |
R. Kenzler, F. Eurich, Ph. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions,, Computer Phys. Comm., 133 (2001), 139.
doi: 10.1016/S0010-4655(00)00159-4. |
[48] |
N. Lecoq, H. Zapolsky and P. Galenko, Evolution of the structure factor in a hyperbolic model of spinodal decomposition,, Eur. Phys. J. Special Topics, 177 (2009), 165. Google Scholar |
[49] |
A. Lorenzi and E. Rocca, Weak solutions for the fully hyperbolic phase-field system of conserved type,, J. Evol. Equ., 7 (2007), 59.
doi: 10.1007/s00028-006-0235-1. |
[50] |
A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Models Appl. Sci., 28 (2005), 709.
doi: 10.1002/mma.590. |
[51] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.
doi: 10.1016/S1874-5717(08)00003-0. |
[52] |
A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 275.
doi: 10.3934/dcds.2010.28.275. |
[53] |
A. Novick-Cohen, On the viscous Cahn-Hilliard equation,, in, (1988), 1985.
|
[54] |
A. Novick-Cohen, The Cahn-Hilliard equation,, in, (2008), 201.
doi: 10.1016/S1874-5717(08)00004-2. |
[55] |
V. Pata and S. Zelik, A remark on the damped wave equation,, Commun. Pure Appl. Anal., 5 (2006), 609.
|
[56] |
V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, Adv. Math. Sci. Appl., 11 (2001), 505.
|
[57] |
J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions,, Ann. Mat. Pura Appl. (4), 185 (2006), 627.
doi: 10.1007/s10231-005-0175-3. |
[58] |
T. Qian, X.-P. Wang and P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows,, Comm. Comp. Phys., 1 (2006), 1. Google Scholar |
[59] |
R. Racke, The Cahn-Hilliard equation with dynamic boundary conditions,, in, 20 (2004), 266.
|
[60] |
R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamical boundary conditions,, Adv. Differential Equations, 8 (2003), 83.
|
[61] |
P. Rybka and K.-H. Hoffmann, Convergence of solutions to Cahn-Hilliard equation,, Comm. Partial Differential Equations, 24 (1999), 1055.
doi: 10.1080/03605309908821458. |
[62] |
A. Segatti, On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: Approximation and long time behaviour,, Math. Models Methods Appl. Sci., 17 (2007), 411.
doi: 10.1142/S0218202507001978. |
[63] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Second edition, 68 (1997).
|
[64] |
V. Vergara, A conserved phase field system with memory and relaxed chemical potential,, J. Math. Anal. Appl., 328 (2007), 789.
doi: 10.1016/j.jmaa.2006.05.075. |
[65] |
H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions,, J. Differential Equations, 204 (2004), 511.
doi: 10.1016/j.jde.2004.05.004. |
show all references
References:
[1] |
A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 663.
doi: 10.1007/s00030-010-0075-0. |
[2] |
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258. Google Scholar |
[3] |
C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions,, Nonlinear Anal., 72 (2010), 2375.
doi: 10.1016/j.na.2009.11.002. |
[4] |
C. Cavaterra, C. G. Gal and M. Grasselli, Cahn-Hilliard equations with memory and dynamic boundary conditions,, Asymptot. Anal., 71 (2011), 123.
|
[5] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", American Mathematical Society Colloquium Publications, 49 (2002).
|
[6] |
R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions,, Math. Nachr., 13 (2006), 1448.
doi: 10.1002/mana.200410431. |
[7] |
M. Conti and M. Coti Zelati, Attractors for the non-viscous Cahn-Hilliard equation with memory in 2D,, Nonlinear Anal., 72 (2010), 1668.
doi: 10.1016/j.na.2009.09.006. |
[8] |
M. Conti, S. Gatti, M. Grasselli and V. Pata, Two-dimensional reaction-diffusion equations with memory,, Quart. Appl. Math., 68 (2010), 607.
|
[9] |
M. Conti and G. Mola, 3-D viscous Cahn-Hilliard equation with memory,, Math. Meth. Appl. Sci., 32 (2009), 1370.
doi: 10.1002/mma.1091. |
[10] |
M. Conti, V. Pata and M. Squassina, Singular limit of differential system with memory,, Indiana Univ. Math. J., 55 (2006), 169.
doi: 10.1512/iumj.2006.55.2661. |
[11] |
C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 297.
|
[12] |
E. B. Dussan, On the spreading of liquids on solid surfaces: Static and dynamic contact lines,, Ann. Rev. Fluid Mech., 11 (1979), 371. Google Scholar |
[13] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.
doi: 10.1002/mana.200310186. |
[14] |
H. P. Fischer, Ph. Maass and W. Dieterich, Novel surface modes of spinodal decomposition,, Phys. Rev. Letters, 79 (1997), 893. Google Scholar |
[15] |
H. P. Fischer, Ph. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows,, Europhys. Letters, 42 (1998), 49. Google Scholar |
[16] |
C. G. Gal, A Cahn-Hilliard model in bounded domains with permeable walls,, Math. Methods Appl. Sci., 29 (2006), 2009.
doi: 10.1002/mma.757. |
[17] |
C. G. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn-Hilliard model with dynamic boundary conditions,, Dyn. Partial Differ. Equ., 5 (2008), 39.
|
[18] |
C. G. Gal, Robust exponential attractors for a conserved Cahn-Hilliard model with singularly perturbed boundary conditions,, Commun. Pure Appl. Anal., 7 (2008), 819.
doi: 10.3934/cpaa.2008.7.819. |
[19] |
C. G. Gal, Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls,, Electron. J. Differential Equations, 2006 ().
|
[20] |
C. G. Gal, G. R. Goldstein, J. A. Goldstein, S. Romanelli and M. Warma, Fredholm alternative, semilinear elliptic problems, and Wentzell boundary conditions,, submitted., (). Google Scholar |
[21] |
C. G. Gal and A. Miranville, Uniform global attractors for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions,, Nonlinear Anal. Real World Appl., 10 (2009), 1738.
doi: 10.1016/j.nonrwa.2008.02.013. |
[22] |
C. G. Gal and A. Miranville, Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 113.
doi: 10.3934/dcdss.2009.2.113. |
[23] |
C. G. Gal and H. Wu, Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation,, Discrete Contin. Dyn. Syst., 22 (2008), 1041.
doi: 10.3934/dcds.2008.22.1041. |
[24] |
P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems,, Phys. Rev. E, 71 (2005). Google Scholar |
[25] |
P. Galenko and D. Jou, Kinetic contribution to the fast spinodal decomposition controlled by diffusion,, Phys. A, 388 (2009), 3113.
doi: 10.1016/j.physa.2009.04.003. |
[26] |
P. Galenko and V. Lebedev, Analysis of the dispersion relation in spinodal decomposition of a binary system,, Philos. Mag. Lett., 87 (2007), 821. Google Scholar |
[27] |
P. Galenko and V. Lebedev, Local nonequilibrium effect on spinodal decomposition in a binary system,, Int. J. Thermodyn., 11 (2008), 21. Google Scholar |
[28] |
P. Galenko and V. Lebedev, Nonequilibrium effects in spinodal decomposition of a binary system,, Phys. Lett. A, 372 (2008), 985. Google Scholar |
[29] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3D,, Math. Models Methods Appl. Sci., 15 (2005), 165.
doi: 10.1142/S0218202505000327. |
[30] |
S. Gatti, M. Grasselli, A. Miranville, V. Pata, Memory relaxation of first order evolution equations,, Nonlinearity, 18 (2005), 1859.
doi: 10.1088/0951-7715/18/4/023. |
[31] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, Memory relaxation of the one-dimensional Cahn-Hilliard equation,, in, 71 (2006), 101.
doi: 10.1142/9789812774293_0006. |
[32] |
S. Gatti, A. Miranville, V. Pata and S. Zelik, Continuous families of exponential attractors for singularly perturbed equations with memory,, Proc. Royal Soc. Edinburgh Sect. A, 140 (2010), 329.
doi: 10.1017/S0308210509000365. |
[33] |
G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions,, Rend. Cl. Sci. Mat. Nat., 141 (2007), 129.
|
[34] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Comm. Pure Appl. Anal., 8 (2009), 881.
doi: 10.3934/cpaa.2009.8.881. |
[35] |
G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls,, Phys. D, 240 (2011), 754.
doi: 10.1016/j.physd.2010.12.007. |
[36] |
M. Grasselli, On the large time behavior of a phase-field system with memory,, Asymptot. Anal., 56 (2008), 229.
|
[37] |
M. Grasselli, V. Pata and F. M. Vegni, Longterm dynamics of a conserved phase-field system with memory,, Asymptot. Anal., 33 (2003), 261.
|
[38] |
M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn-Hilliard equation with inertial term,, J. Evol. Equ., 9 (2009), 371.
doi: 10.1007/s00028-009-0017-7. |
[39] |
M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term,, Comm. Partial Differential Equations, 34 (2009), 137.
doi: 10.1080/03605300802608247. |
[40] |
M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term,, Nonlinearity, 23 (2010), 707.
doi: 10.1088/0951-7715/23/3/016. |
[41] |
M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory,, in, 50 (2002), 155.
|
[42] |
M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behaviour of a nonisothermal viscous Cahn-Hilliard equation with inertial term,, J. Differential Equations, 239 (2007), 38.
doi: 10.1016/j.jde.2007.05.003. |
[43] |
M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178.
doi: 10.1016/0167-2789(95)00173-5. |
[44] |
M. B. Kania, Global attractor for the perturbed viscous Cahn-Hilliard equation,, Colloq. Math., 109 (2007), 217.
doi: 10.4064/cm109-2-4. |
[45] |
M. B. Kania, Upper semicontinuity of global attractors for the perturbed viscous Cahn-Hilliard equations,, Topol. Methods Nonlinear Anal., 32 (2008), 327.
|
[46] |
T. Kato, "Perturbation Theory for Linear Operators,", Reprint of the 1980 edition, (1980).
|
[47] |
R. Kenzler, F. Eurich, Ph. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions,, Computer Phys. Comm., 133 (2001), 139.
doi: 10.1016/S0010-4655(00)00159-4. |
[48] |
N. Lecoq, H. Zapolsky and P. Galenko, Evolution of the structure factor in a hyperbolic model of spinodal decomposition,, Eur. Phys. J. Special Topics, 177 (2009), 165. Google Scholar |
[49] |
A. Lorenzi and E. Rocca, Weak solutions for the fully hyperbolic phase-field system of conserved type,, J. Evol. Equ., 7 (2007), 59.
doi: 10.1007/s00028-006-0235-1. |
[50] |
A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Models Appl. Sci., 28 (2005), 709.
doi: 10.1002/mma.590. |
[51] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.
doi: 10.1016/S1874-5717(08)00003-0. |
[52] |
A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 275.
doi: 10.3934/dcds.2010.28.275. |
[53] |
A. Novick-Cohen, On the viscous Cahn-Hilliard equation,, in, (1988), 1985.
|
[54] |
A. Novick-Cohen, The Cahn-Hilliard equation,, in, (2008), 201.
doi: 10.1016/S1874-5717(08)00004-2. |
[55] |
V. Pata and S. Zelik, A remark on the damped wave equation,, Commun. Pure Appl. Anal., 5 (2006), 609.
|
[56] |
V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, Adv. Math. Sci. Appl., 11 (2001), 505.
|
[57] |
J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions,, Ann. Mat. Pura Appl. (4), 185 (2006), 627.
doi: 10.1007/s10231-005-0175-3. |
[58] |
T. Qian, X.-P. Wang and P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows,, Comm. Comp. Phys., 1 (2006), 1. Google Scholar |
[59] |
R. Racke, The Cahn-Hilliard equation with dynamic boundary conditions,, in, 20 (2004), 266.
|
[60] |
R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamical boundary conditions,, Adv. Differential Equations, 8 (2003), 83.
|
[61] |
P. Rybka and K.-H. Hoffmann, Convergence of solutions to Cahn-Hilliard equation,, Comm. Partial Differential Equations, 24 (1999), 1055.
doi: 10.1080/03605309908821458. |
[62] |
A. Segatti, On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: Approximation and long time behaviour,, Math. Models Methods Appl. Sci., 17 (2007), 411.
doi: 10.1142/S0218202507001978. |
[63] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Second edition, 68 (1997).
|
[64] |
V. Vergara, A conserved phase field system with memory and relaxed chemical potential,, J. Math. Anal. Appl., 328 (2007), 789.
doi: 10.1016/j.jmaa.2006.05.075. |
[65] |
H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions,, J. Differential Equations, 204 (2004), 511.
doi: 10.1016/j.jde.2004.05.004. |
[1] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[2] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[3] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[4] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[5] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[6] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[7] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[8] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[9] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[10] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[14] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[15] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[16] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[17] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[18] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[19] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[20] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]