• Previous Article
    Mean-square convergence of numerical approximations for a class of backward stochastic differential equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence, non-negativity and stability of a new Milstein scheme with applications to finance
2013, 18(8): 2069-2082. doi: 10.3934/dcdsb.2013.18.2069

Triple collisions of invariant bundles

1. 

Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden

2. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona

Received  July 2012 Revised  May 2013 Published  July 2013

We provide several explicit examples of 3D quasiperiodic linear skew-products with simple Lyapunov spectrum, that is with $3$ different Lyapunov multipliers, for which the corresponding Oseledets bundles are measurable but not continuous, colliding in a measure zero dense set.
Citation: Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069
References:
[1]

A. Avila and S. Jitomirskaya, The ten martini problem,, Annals of Mathematics (2), 170 (2009), 303. doi: 10.4007/annals.2009.170.303.

[2]

J. Bourgain, "Green's Function Estimates for Lattice Schrödinger Operators and Applications,", Annals of Mathematics Studies, 158 (2005).

[3]

R. Calleja and J.-Ll. Figueras, Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map,, Chaos, 22 (2012). doi: 10.1063/1.4737205.

[4]

M. Canadell and A. Haro, Parameterization method for computing quasi-periodic normally hyperbolic invariant tori,, preprint, (2013).

[5]

C. Chicone and R. C. Swanson, Spectral theory for linearizations of dynamical systems,, J. Differential Equations, 40 (1981), 155. doi: 10.1016/0022-0396(81)90015-2.

[6]

M. D. Choi, G. A. Eliott and N. Yui, Gauss polynomials and the rotation algebra,, Invent. Math., 99 (1990), 225. doi: 10.1007/BF01234419.

[7]

U. Feudel, S. Kuznetsov and A. Pikovsky, "Strange Nonchaotic Attractors. Dynamics Between Order and Chaos in Quasiperiodically Forced Systems,", World Scientific Series on Nonlinear Science, 56 (2006).

[8]

J.-Ll. Figueras, "Fiberwise Hyperbolic Invariant Tori in Quasi-Periodically Forced Skew Product Systems,", Ph.D. thesis, (2011).

[9]

Á. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown,, Chaos, 16 (2006). doi: 10.1063/1.2150947.

[10]

Á. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261. doi: 10.3934/dcdsb.2006.6.1261.

[11]

Á. Haro and J. Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006). doi: 10.1063/1.2259821.

[12]

P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field,, Proceedings of the Physical Society, 68 (1955). doi: 10.1088/0370-1298/68/10/304.

[13]

M.-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension $2$,, Comment. Math. Helv., 58 (1983), 453. doi: 10.1007/BF02564647.

[14]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, (1977).

[15]

T. H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products,, Ergodic Theory Dynam. Systems, 27 (2007), 493. doi: 10.1017/S0143385706000745.

[16]

A. Yu Jalnine and A. H. Osbaldestin, Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map,, Phys. Rev. E (3), 71 (2005). doi: 10.1103/PhysRevE.71.016206.

[17]

Russell A. Johnson, The Oseledec and Sacker-Sell spectra for almost periodic linear systems: An example,, Proc. Amer. Math. Soc., 99 (1987), 261. doi: 10.1090/S0002-9939-1987-0870782-7.

[18]

G. Keller, A note on strange nonchaotic attractors,, Fund. Math., 151 (1996), 139.

[19]

J. A. Ketoja and I. I. Satija, Self-similarity and localization,, Phys. Rev. Lett., 75 (1995), 2762. doi: 10.1103/PhysRevLett.75.2762.

[20]

John N. Mather, Characterization of Anosov diffeomorphisms,, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math., 30 (1968), 479.

[21]

V. Millionshchikov, Proof of the existence of non-irreducible systems of linear differential equations with almost periodic coefficients,, J. Differential Equations, 6 (1968), 149.

[22]

V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 179.

[23]

J. Puig, Cantor spectrum for the almost Mathieu operator,, Comm. Math. Phys., 244 (2006), 297. doi: 10.1007/s00220-003-0977-3.

[24]

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[25]

Robert J. Sacker and George R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[26]

J. B. Sokoloff, Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials,, Physics Reports, 126 (1985), 189. doi: 10.1016/0370-1573(85)90088-2.

show all references

References:
[1]

A. Avila and S. Jitomirskaya, The ten martini problem,, Annals of Mathematics (2), 170 (2009), 303. doi: 10.4007/annals.2009.170.303.

[2]

J. Bourgain, "Green's Function Estimates for Lattice Schrödinger Operators and Applications,", Annals of Mathematics Studies, 158 (2005).

[3]

R. Calleja and J.-Ll. Figueras, Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map,, Chaos, 22 (2012). doi: 10.1063/1.4737205.

[4]

M. Canadell and A. Haro, Parameterization method for computing quasi-periodic normally hyperbolic invariant tori,, preprint, (2013).

[5]

C. Chicone and R. C. Swanson, Spectral theory for linearizations of dynamical systems,, J. Differential Equations, 40 (1981), 155. doi: 10.1016/0022-0396(81)90015-2.

[6]

M. D. Choi, G. A. Eliott and N. Yui, Gauss polynomials and the rotation algebra,, Invent. Math., 99 (1990), 225. doi: 10.1007/BF01234419.

[7]

U. Feudel, S. Kuznetsov and A. Pikovsky, "Strange Nonchaotic Attractors. Dynamics Between Order and Chaos in Quasiperiodically Forced Systems,", World Scientific Series on Nonlinear Science, 56 (2006).

[8]

J.-Ll. Figueras, "Fiberwise Hyperbolic Invariant Tori in Quasi-Periodically Forced Skew Product Systems,", Ph.D. thesis, (2011).

[9]

Á. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown,, Chaos, 16 (2006). doi: 10.1063/1.2150947.

[10]

Á. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261. doi: 10.3934/dcdsb.2006.6.1261.

[11]

Á. Haro and J. Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006). doi: 10.1063/1.2259821.

[12]

P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field,, Proceedings of the Physical Society, 68 (1955). doi: 10.1088/0370-1298/68/10/304.

[13]

M.-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension $2$,, Comment. Math. Helv., 58 (1983), 453. doi: 10.1007/BF02564647.

[14]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, (1977).

[15]

T. H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products,, Ergodic Theory Dynam. Systems, 27 (2007), 493. doi: 10.1017/S0143385706000745.

[16]

A. Yu Jalnine and A. H. Osbaldestin, Smooth and nonsmooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map,, Phys. Rev. E (3), 71 (2005). doi: 10.1103/PhysRevE.71.016206.

[17]

Russell A. Johnson, The Oseledec and Sacker-Sell spectra for almost periodic linear systems: An example,, Proc. Amer. Math. Soc., 99 (1987), 261. doi: 10.1090/S0002-9939-1987-0870782-7.

[18]

G. Keller, A note on strange nonchaotic attractors,, Fund. Math., 151 (1996), 139.

[19]

J. A. Ketoja and I. I. Satija, Self-similarity and localization,, Phys. Rev. Lett., 75 (1995), 2762. doi: 10.1103/PhysRevLett.75.2762.

[20]

John N. Mather, Characterization of Anosov diffeomorphisms,, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math., 30 (1968), 479.

[21]

V. Millionshchikov, Proof of the existence of non-irreducible systems of linear differential equations with almost periodic coefficients,, J. Differential Equations, 6 (1968), 149.

[22]

V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 179.

[23]

J. Puig, Cantor spectrum for the almost Mathieu operator,, Comm. Math. Phys., 244 (2006), 297. doi: 10.1007/s00220-003-0977-3.

[24]

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[25]

Robert J. Sacker and George R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[26]

J. B. Sokoloff, Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials,, Physics Reports, 126 (1985), 189. doi: 10.1016/0370-1573(85)90088-2.

[1]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[2]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[3]

Viorel Nitica. Examples of topologically transitive skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351

[4]

Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013

[5]

David Färm, Tomas Persson. Dimension and measure of baker-like skew-products of $\boldsymbol{\beta}$-transformations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3525-3537. doi: 10.3934/dcds.2012.32.3525

[6]

C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897

[7]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[8]

Roy Adler, Bruce Kitchens, Michael Shub. Errata to "Stably ergodic skew products". Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 456-456. doi: 10.3934/dcds.1999.5.456

[9]

Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605

[10]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[11]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[12]

Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307

[13]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[14]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[15]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

[16]

Anatole Katok, Federico Rodriguez Hertz. Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups. Journal of Modern Dynamics, 2010, 4 (3) : 487-515. doi: 10.3934/jmd.2010.4.487

[17]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[18]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[19]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[20]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]