November  2013, 18(9): 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

Blow-up results for semilinear wave equations in the superconformal case

1. 

Département de Mathématiques, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Campus Universitaire 1060, Tunis, Tunisia

2. 

Université Paris 13, Sorbonne Paris Cit, LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France

Received  March 2013 Revised  June 2013 Published  September 2013

We consider the semilinear wave equation in higher dimensions with power nonlinearity in the superconformal range, and its perturbations with lower order terms, including the Klein-Gordon equation. We improve the upper bounds on blow-up solutions previously obtained by Killip, Stovall and Vişan [22]. Our proof uses the similarity variables' setting. We consider the equation in that setting as a perturbation of the conformal case, and we handle the extra terms thanks to the ideas we already developed in [16] for perturbations of the pure power conformal case with lower order terms.
Citation: Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315
References:
[1]

C. Antonini and F. Merle, Optimal bounds on positive blow-up solutions for a semilinear wave equation,, Internat. Math. Res. Notices, (2001), 1141. doi: 10.1155/S107379280100054X.

[2]

P. Bizoń, P. Breitenlohner, D. Maison and A. Wasserman, Self-similar solutions of the cubic wave equation,, Nonlinearity, 23 (2010), 225. doi: 10.1088/0951-7715/23/2/002.

[3]

P. Bizoń, T. Chmaj and N. Szpak, Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3645363.

[4]

P. Bizoń, T. Chmaj and Z. Tabor, On blowup for semilinear wave equations with a focusing nonlinearity,, Nonlinearity, 17 (2004), 2187. doi: 10.1088/0951-7715/17/6/009.

[5]

R. Côte and H. Zaag, Construction of a multi-soliton blow-up solution to the semilinear wave equation in one space dimension,, Comm. Pure Appl. Math., 66 (2013), 1541. doi: 10.1002/cpa.21452.

[6]

R. Donninger, M. Huang, J. Krieger and W. Schlag, Exotic blowup solutions for the $u^5$ focusing wave equation in $\mathbbR^3$, (2012)., preprint, ().

[7]

R. Donninger and W. Schlag, Numerical study of the blowup/global existence dichotomy for the focusing cubic nonlinear Klein-Gordon equation,, Nonlinearity, 24 (2011), 2547. doi: 10.1088/0951-7715/24/9/009.

[8]

R. Donninger and B. Schörkhuber, Stable self-similar blow up for energy subcritical wave equations,, Dyn. Partial Differ. Equ., 9 (2012), 63. doi: 10.4310/DPDE.2012.v9.n1.a3.

[9]

_________, Stable self-similar blow up for energy supercritical wave equations, (2012)., preprint, ().

[10]

T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type {II blow-up solutions of the energy-critical wave equation},, J. Eur. Math. Soc. (JEMS), 13 (2011), 533. doi: 10.4171/JEMS/261.

[11]

________, Classification of radial solutions of the focusing, energy-critical wave equation,, Cambridge J. Math, 1 (2013), 75. doi: 10.4310/CJM.2013.v1.n1.a3.

[12]

________, Profiles of bounded radial solutions of the focusing, energy-critical wave equation,, Geom. Funct. Anal., 22 (2012), 639. doi: 10.1007/s00039-012-0174-7.

[13]

________, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case,, J. Eur. Math. Soc. (JEMS), 14 (2012), 1389. doi: 10.4171/JEMS/336.

[14]

T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation,, Int. Math. Res. Pap. IMRP, (2008). doi: 10.1093/imrp/rpn002.

[15]

M. Hamza and H. Zaag, Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations,, Bull. Sci. Math., (2013). doi: 10.1016/j.bulsci.2013.05.004.

[16]

________, A Lyapunov functional and blow-up results for a class of perturbations for semilinear wave equations in the critical case,, J. Hyperbolic Differ. Equ., 9 (2012), 195. doi: 10.1142/S0219891612500063.

[17]

________, A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations,, Nonlinearity, 25 (2012), 2759. doi: 10.1088/0951-7715/25/9/2759.

[18]

S. Ibrahim, N. Masmoudi, and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation,, Anal. PDE, 4 (2011), 405. doi: 10.2140/apde.2011.4.405.

[19]

________, Threshold solutions in the case of mass-shift for the critical klein-gordon equation,, Trans. Amer. Math. Soc., (2013).

[20]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, Acta Mathematica, 201 (2008), 147. doi: 10.1007/s11511-008-0031-6.

[21]

________, Radial solutions to energy supercritical wave equations in odd dimensions,, Discrete Contin. Dyn. Syst., 31 (2011), 1365. doi: 10.3934/dcds.2011.31.1365.

[22]

R. Killip, B. Stovall, and M. Vişan, Blowup behaviour for the nonlinear Klein-Gordon equation,, Math. Ann., (2013). doi: 10.1007/s00208-013-0960-z.

[23]

R. Killip and M. Vişan, Smooth solutions to the nonlinear wave equation can blow up on Cantor sets, (2011)., arXiv:1103.5257v1., ().

[24]

J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation,, Amer. J. Math., 135 (2013), 935. doi: 10.1353/ajm.2013.0034.

[25]

________, Global dynamics of the nonradial energy-critical wave equation above the ground state energy,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 2423. doi: 10.3934/dcds.2013.33.2423.

[26]

J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation,, Amer. J. Math., 129 (2007), 843. doi: 10.1353/ajm.2007.0021.

[27]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t} = -A u + \mathcal F (u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.

[28]

F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation,, Amer. J. Math., 125 (2003), 1147. doi: 10.1353/ajm.2003.0033.

[29]

________, Blow-up rate near the blow-up surface for semilinear wave equations,, Internat. Math. Res. Notices, (2005), 1127. doi: 10.1155/IMRN.2005.1127.

[30]

________, Determination of the blow-up rate for a critical semilinear wave equation,, Math. Ann., 331 (2005), 395. doi: 10.1007/s00208-004-0587-1.

[31]

________, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension,, J. Funct. Anal., 253 (2007), 43. doi: 10.1016/j.jfa.2007.03.007.

[32]

________, Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation,, Comm. Math. Phys., 282 (2008), 55. doi: 10.1007/s00220-008-0532-3.

[33]

________, Isolatedness of characteristic points for a semilinear wave equation in one space dimension,, in Séminaire sur les Équations aux Dérivées Partielles, (2010), 2009.

[34]

________, Blow-up behavior outside the origin for a semilinear wave equation in the radial case,, Bull. Sci. Math., 135 (2011), 353. doi: 10.1016/j.bulsci.2011.03.001.

[35]

________, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension,, Amer. J. Math., 134 (2012), 581. doi: 10.1353/ajm.2012.0021.

[36]

________, Isolatedness of characteristic points for a semilinear wave equation in one space dimension,, Duke Math. J., 161 (2012), 2837. doi: 10.1215/00127094-1902040.

[37]

K. Nakanishi and W. Schlag, "Invariant Manifolds and Dispersive Hamiltonian Evolution Equations,", Zurich Lectures in Advanced Mathematics, (2011). doi: 10.4171/095.

[38]

G. B. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics (New York), (1999). doi: 10.1002/9781118032954.

show all references

References:
[1]

C. Antonini and F. Merle, Optimal bounds on positive blow-up solutions for a semilinear wave equation,, Internat. Math. Res. Notices, (2001), 1141. doi: 10.1155/S107379280100054X.

[2]

P. Bizoń, P. Breitenlohner, D. Maison and A. Wasserman, Self-similar solutions of the cubic wave equation,, Nonlinearity, 23 (2010), 225. doi: 10.1088/0951-7715/23/2/002.

[3]

P. Bizoń, T. Chmaj and N. Szpak, Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3645363.

[4]

P. Bizoń, T. Chmaj and Z. Tabor, On blowup for semilinear wave equations with a focusing nonlinearity,, Nonlinearity, 17 (2004), 2187. doi: 10.1088/0951-7715/17/6/009.

[5]

R. Côte and H. Zaag, Construction of a multi-soliton blow-up solution to the semilinear wave equation in one space dimension,, Comm. Pure Appl. Math., 66 (2013), 1541. doi: 10.1002/cpa.21452.

[6]

R. Donninger, M. Huang, J. Krieger and W. Schlag, Exotic blowup solutions for the $u^5$ focusing wave equation in $\mathbbR^3$, (2012)., preprint, ().

[7]

R. Donninger and W. Schlag, Numerical study of the blowup/global existence dichotomy for the focusing cubic nonlinear Klein-Gordon equation,, Nonlinearity, 24 (2011), 2547. doi: 10.1088/0951-7715/24/9/009.

[8]

R. Donninger and B. Schörkhuber, Stable self-similar blow up for energy subcritical wave equations,, Dyn. Partial Differ. Equ., 9 (2012), 63. doi: 10.4310/DPDE.2012.v9.n1.a3.

[9]

_________, Stable self-similar blow up for energy supercritical wave equations, (2012)., preprint, ().

[10]

T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type {II blow-up solutions of the energy-critical wave equation},, J. Eur. Math. Soc. (JEMS), 13 (2011), 533. doi: 10.4171/JEMS/261.

[11]

________, Classification of radial solutions of the focusing, energy-critical wave equation,, Cambridge J. Math, 1 (2013), 75. doi: 10.4310/CJM.2013.v1.n1.a3.

[12]

________, Profiles of bounded radial solutions of the focusing, energy-critical wave equation,, Geom. Funct. Anal., 22 (2012), 639. doi: 10.1007/s00039-012-0174-7.

[13]

________, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case,, J. Eur. Math. Soc. (JEMS), 14 (2012), 1389. doi: 10.4171/JEMS/336.

[14]

T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation,, Int. Math. Res. Pap. IMRP, (2008). doi: 10.1093/imrp/rpn002.

[15]

M. Hamza and H. Zaag, Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations,, Bull. Sci. Math., (2013). doi: 10.1016/j.bulsci.2013.05.004.

[16]

________, A Lyapunov functional and blow-up results for a class of perturbations for semilinear wave equations in the critical case,, J. Hyperbolic Differ. Equ., 9 (2012), 195. doi: 10.1142/S0219891612500063.

[17]

________, A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations,, Nonlinearity, 25 (2012), 2759. doi: 10.1088/0951-7715/25/9/2759.

[18]

S. Ibrahim, N. Masmoudi, and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation,, Anal. PDE, 4 (2011), 405. doi: 10.2140/apde.2011.4.405.

[19]

________, Threshold solutions in the case of mass-shift for the critical klein-gordon equation,, Trans. Amer. Math. Soc., (2013).

[20]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, Acta Mathematica, 201 (2008), 147. doi: 10.1007/s11511-008-0031-6.

[21]

________, Radial solutions to energy supercritical wave equations in odd dimensions,, Discrete Contin. Dyn. Syst., 31 (2011), 1365. doi: 10.3934/dcds.2011.31.1365.

[22]

R. Killip, B. Stovall, and M. Vişan, Blowup behaviour for the nonlinear Klein-Gordon equation,, Math. Ann., (2013). doi: 10.1007/s00208-013-0960-z.

[23]

R. Killip and M. Vişan, Smooth solutions to the nonlinear wave equation can blow up on Cantor sets, (2011)., arXiv:1103.5257v1., ().

[24]

J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation,, Amer. J. Math., 135 (2013), 935. doi: 10.1353/ajm.2013.0034.

[25]

________, Global dynamics of the nonradial energy-critical wave equation above the ground state energy,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 2423. doi: 10.3934/dcds.2013.33.2423.

[26]

J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation,, Amer. J. Math., 129 (2007), 843. doi: 10.1353/ajm.2007.0021.

[27]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t} = -A u + \mathcal F (u)$,, Trans. Amer. Math. Soc., 192 (1974), 1.

[28]

F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation,, Amer. J. Math., 125 (2003), 1147. doi: 10.1353/ajm.2003.0033.

[29]

________, Blow-up rate near the blow-up surface for semilinear wave equations,, Internat. Math. Res. Notices, (2005), 1127. doi: 10.1155/IMRN.2005.1127.

[30]

________, Determination of the blow-up rate for a critical semilinear wave equation,, Math. Ann., 331 (2005), 395. doi: 10.1007/s00208-004-0587-1.

[31]

________, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension,, J. Funct. Anal., 253 (2007), 43. doi: 10.1016/j.jfa.2007.03.007.

[32]

________, Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation,, Comm. Math. Phys., 282 (2008), 55. doi: 10.1007/s00220-008-0532-3.

[33]

________, Isolatedness of characteristic points for a semilinear wave equation in one space dimension,, in Séminaire sur les Équations aux Dérivées Partielles, (2010), 2009.

[34]

________, Blow-up behavior outside the origin for a semilinear wave equation in the radial case,, Bull. Sci. Math., 135 (2011), 353. doi: 10.1016/j.bulsci.2011.03.001.

[35]

________, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension,, Amer. J. Math., 134 (2012), 581. doi: 10.1353/ajm.2012.0021.

[36]

________, Isolatedness of characteristic points for a semilinear wave equation in one space dimension,, Duke Math. J., 161 (2012), 2837. doi: 10.1215/00127094-1902040.

[37]

K. Nakanishi and W. Schlag, "Invariant Manifolds and Dispersive Hamiltonian Evolution Equations,", Zurich Lectures in Advanced Mathematics, (2011). doi: 10.4171/095.

[38]

G. B. Whitham, "Linear and Nonlinear Waves,", Pure and Applied Mathematics (New York), (1999). doi: 10.1002/9781118032954.

[1]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[2]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[3]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[4]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[5]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[6]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[7]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[8]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[9]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[10]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[11]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[12]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[13]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[14]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[15]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[16]

Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa. Sharp blow-up for semilinear wave equations with non-compactly supported data. Conference Publications, 2011, 2011 (Special) : 1351-1357. doi: 10.3934/proc.2011.2011.1351

[17]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[18]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[19]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[20]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]