• Previous Article
    Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells
  • DCDS-B Home
  • This Issue
  • Next Article
    On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response
November  2013, 18(9): 2355-2376. doi: 10.3934/dcdsb.2013.18.2355

The infected frontier in an SEIR epidemic model with infinite delay

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

Department of Mathematics, MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240

Received  February 2013 Revised  June 2013 Published  September 2013

An SEIR epidemic model with infinite delay and the Neumann boundary condition is investigated, as well as the corresponding free boundary problem, in which the free boundary exactly describes the spreading frontier of the disease. For the problem in a fixed domain with null Neumann boundary condition, the transmission dynamics of the disease is determined by the basic reproduction number $R_0$. More specifically, whether the disease will die out or not depends on $R_0<1$ or $R_0>1$; while for the free boundary problem, we show that under certain conditions the disease will die out even $R_0>1$. Our results indicate that besides the basic reproduction number, the initial size of the infected domain and the diffusivity of the disease in a new region also produce a non-negligible influence to the disease transmission, and it seems more reasonable and acceptable.
Citation: Zhigui Lin, Yinan Zhao, Peng Zhou. The infected frontier in an SEIR epidemic model with infinite delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2355-2376. doi: 10.3934/dcdsb.2013.18.2355
References:
[1]

L. Caffarelli and S. Salsa, "A Geometric Approach to Free Boundary Problems,", American Mathematical Society, 68 (2005).   Google Scholar

[2]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[3]

J. Crank, "Free and Moving Boundary Problems,", Clarendon Press, (1984).   Google Scholar

[4]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, J. Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[5]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[6]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: invasion of a superior or inferior competitor,, Discrete Contin. Dyn. Syst. Ser. B, ().   Google Scholar

[7]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem,, Interfaces Free Bound., 3 (2001), 337.   Google Scholar

[8]

G. Röst and J. H. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[9]

H. Ghidouche, P. Souplet and D. Tarzia, Decay of global solutions, stability and blowup for a reaction-diffusion problem with free boundary,, Proc. Amer. Math. Soc., 129 (2001), 781.  doi: 10.1090/S0002-9939-00-05705-1.  Google Scholar

[10]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[11]

D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology,, Nonlinear Anal. Real World Appl., 4 (2003), 261.  doi: 10.1016/S1468-1218(02)00009-3.  Google Scholar

[12]

K. I. Kim, Z. G. Lin and Z. Ling, Global existence and blowup of solutions to a free boundary problem for mutualistic model,, Sci. China Math., 53 (2010), 2085.  doi: 10.1007/s11425-010-4007-6.  Google Scholar

[13]

O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc, (1968).   Google Scholar

[14]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[15]

Z. G. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response,, Nonlinear Anal., 57 (2004), 421.  doi: 10.1016/j.na.2004.02.022.  Google Scholar

[16]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[17]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477.   Google Scholar

[18]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241.   Google Scholar

[19]

L. I. Rubinstein, "The Stefan Problem,", American Mathematical Society, (1971).   Google Scholar

show all references

References:
[1]

L. Caffarelli and S. Salsa, "A Geometric Approach to Free Boundary Problems,", American Mathematical Society, 68 (2005).   Google Scholar

[2]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[3]

J. Crank, "Free and Moving Boundary Problems,", Clarendon Press, (1984).   Google Scholar

[4]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, J. Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[5]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[6]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: invasion of a superior or inferior competitor,, Discrete Contin. Dyn. Syst. Ser. B, ().   Google Scholar

[7]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem,, Interfaces Free Bound., 3 (2001), 337.   Google Scholar

[8]

G. Röst and J. H. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[9]

H. Ghidouche, P. Souplet and D. Tarzia, Decay of global solutions, stability and blowup for a reaction-diffusion problem with free boundary,, Proc. Amer. Math. Soc., 129 (2001), 781.  doi: 10.1090/S0002-9939-00-05705-1.  Google Scholar

[10]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[11]

D. Hilhorst, M. Mimura and R. Schätzle, Vanishing latent heat limit in a Stefan-like problem arising in biology,, Nonlinear Anal. Real World Appl., 4 (2003), 261.  doi: 10.1016/S1468-1218(02)00009-3.  Google Scholar

[12]

K. I. Kim, Z. G. Lin and Z. Ling, Global existence and blowup of solutions to a free boundary problem for mutualistic model,, Sci. China Math., 53 (2010), 2085.  doi: 10.1007/s11425-010-4007-6.  Google Scholar

[13]

O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc, (1968).   Google Scholar

[14]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[15]

Z. G. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response,, Nonlinear Anal., 57 (2004), 421.  doi: 10.1016/j.na.2004.02.022.  Google Scholar

[16]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[17]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477.   Google Scholar

[18]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241.   Google Scholar

[19]

L. I. Rubinstein, "The Stefan Problem,", American Mathematical Society, (1971).   Google Scholar

[1]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[5]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[6]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[9]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[10]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[11]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[12]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[13]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[14]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[15]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[16]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[17]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[18]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[19]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[20]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]