January  2013, 18(1): 237-258. doi: 10.3934/dcdsb.2013.18.237

On the multiple spike solutions for singularly perturbed elliptic systems

1. 

Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

2. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

Received  June 2011 Revised  June 2012 Published  September 2012

We study the multiplicity of positive solutions for the two coupled nonlinear Schrödinger equations in bounded domains in this paper. By using Nehari manifold and Lusternik-Schnirelmann category, we prove the existence of multiple positive solutions for two coupled nonlinear Schrödinger equations in bounded domains. We also propose a numerical scheme that leads to various new numerical predictions regarding the solution characteristics.
Citation: Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237
References:
[1]

S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u + u=a(x)u^p+f(x)$ in $\mathbbR^N$,, Calc. Var. Partial Diff. Eqns., 11 (2000), 63.  doi: 10.1007/s005260050003.  Google Scholar

[2]

A. Ambrosetti, "Critical Points and Nonlinear Variational Problems,", Bulletin Soc. Math. France, (1992).   Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrodinger equations,, Journal of the London Mathematical Society, 75 (2007), 67.   Google Scholar

[4]

T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation,, Mathematische Annalen, 388 (2007), 147.   Google Scholar

[5]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259.   Google Scholar

[6]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems,, Calc. Var. Partial Differential Equations, 17 (2003), 257.   Google Scholar

[7]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations,, Journal of differential equations, 74 (1988), 120.   Google Scholar

[8]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. I. H. Poincaré-AN, 25 (2008), 149.   Google Scholar

[9]

N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system,, NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555.   Google Scholar

[10]

M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^p=0$ in $\mathbbR^N$,, Arch. Rat. Math. Anal., 105 (1989), 243.   Google Scholar

[11]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case I,, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 102.   Google Scholar

[12]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case II,, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223.   Google Scholar

[13]

W. C. Lien, S. Y. Tzeng and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains,, Differential Integral Equations, 6 (1993), 1281.   Google Scholar

[14]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. I. H. Poincaré-AN, 22 (2005), 403.   Google Scholar

[15]

P. E. Merilees, The pseudo-spectral approximation applied to the shallow water equations on a sphere,, Atmosphere, 11 (1973), 13.   Google Scholar

[16]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 47.   Google Scholar

[17]

Z. Nehari, On a class of nonlinear second-order differential equations,, Trans. Am. Math. Soc., 95 (1960), 101.  doi: 10.1090/S0002-9947-1960-0111898-8.  Google Scholar

[18]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, Journal of Differential Equations, 227 (2006), 258.   Google Scholar

[19]

H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain,, Nonlinear Differential Equations Appl., 11 (2004), 361.  doi: 10.1007/s00030-004-2008-2.  Google Scholar

show all references

References:
[1]

S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u + u=a(x)u^p+f(x)$ in $\mathbbR^N$,, Calc. Var. Partial Diff. Eqns., 11 (2000), 63.  doi: 10.1007/s005260050003.  Google Scholar

[2]

A. Ambrosetti, "Critical Points and Nonlinear Variational Problems,", Bulletin Soc. Math. France, (1992).   Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrodinger equations,, Journal of the London Mathematical Society, 75 (2007), 67.   Google Scholar

[4]

T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation,, Mathematische Annalen, 388 (2007), 147.   Google Scholar

[5]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259.   Google Scholar

[6]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems,, Calc. Var. Partial Differential Equations, 17 (2003), 257.   Google Scholar

[7]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations,, Journal of differential equations, 74 (1988), 120.   Google Scholar

[8]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. I. H. Poincaré-AN, 25 (2008), 149.   Google Scholar

[9]

N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system,, NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555.   Google Scholar

[10]

M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^p=0$ in $\mathbbR^N$,, Arch. Rat. Math. Anal., 105 (1989), 243.   Google Scholar

[11]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case I,, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 102.   Google Scholar

[12]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case II,, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223.   Google Scholar

[13]

W. C. Lien, S. Y. Tzeng and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains,, Differential Integral Equations, 6 (1993), 1281.   Google Scholar

[14]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. I. H. Poincaré-AN, 22 (2005), 403.   Google Scholar

[15]

P. E. Merilees, The pseudo-spectral approximation applied to the shallow water equations on a sphere,, Atmosphere, 11 (1973), 13.   Google Scholar

[16]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 47.   Google Scholar

[17]

Z. Nehari, On a class of nonlinear second-order differential equations,, Trans. Am. Math. Soc., 95 (1960), 101.  doi: 10.1090/S0002-9947-1960-0111898-8.  Google Scholar

[18]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials,, Journal of Differential Equations, 227 (2006), 258.   Google Scholar

[19]

H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain,, Nonlinear Differential Equations Appl., 11 (2004), 361.  doi: 10.1007/s00030-004-2008-2.  Google Scholar

[1]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[2]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[3]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[8]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[14]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[17]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[18]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[19]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[20]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]