November  2013, 18(9): 2397-2425. doi: 10.3934/dcdsb.2013.18.2397

Strong and weak Allee effects and chaotic dynamics in Richards' growths

1. 

Instituto Superior de Engenharia de Lisboa - ISEL, ADM and CEAUL, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa

2. 

LAAS-CNRS, INSA, University of Toulouse, 7 Avenue du Colonel Roche, 31077 Toulouse, France

3. 

INSA, University of Toulouse, 135 Avenue du Rangueil, 31077 Toulouse, France

Received  April 2013 Revised  June 2013 Published  September 2013

In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.
Citation: J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha. Strong and weak Allee effects and chaotic dynamics in Richards' growths. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2397-2425. doi: 10.3934/dcdsb.2013.18.2397
References:
[1]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational growth models proportional to beta densities with Allee effect,, Amer. Inst. Phys., 1124 (2009), 3.

[2]

S. M. Aleixo and J. L. Rocha, Generalized models from Beta(p,2) densities with strong Allee effect: dynamical approach,, Journal of Computing and Information Technology, 3 (2012), 201. doi: 10.2498/cit.1002098.

[3]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management,, Trends in Ecology & Evolution, 22 (2007), 185. doi: 10.1016/j.tree.2006.12.002.

[4]

C. P. D. Birch, A new generalized logistic sigmoid growth equation compared with the Richards growth equation,, Annals of Botany, 83 (1999), 713. doi: 10.1006/anbo.1999.0877.

[5]

D. S. Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084.

[6]

C. E. Brassil, Mean time to extinction of a metapopulation with an Allee effect,, Ecological Modelling, 143 (2001), 9. doi: 10.1016/S0304-3800(01)00351-9.

[7]

J. P. Carcassès, An algorithm to determine the nature and the transitions of communication areas generated by a one-dimensional map,, in Proc. European Conference on Iteration Theory (ECIT 1991), (1992), 27.

[8]

J. P. Carcassès, Determination of different configurations of fold and flip bifurcation curves of a one or two-dimensional map,, International Journal of Bifurcation and Chaos, 3 (1993), 869. doi: 10.1142/S0218127493000763.

[9]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", $2^{nd}$ edition, (1990).

[10]

S. Elaydi and R. J. Sacker, Population models with Allee effect: A new model,, Journal of Biological Dynamics, 4 (2009), 397. doi: 10.1080/17513750903377434.

[11]

X. Fauvergue, J-C. Malusa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2007), 2392. doi: 10.1890/06-1238.1.

[12]

D. Fournier-Prunaret, The bifurcation structure of a family of degree one circle endomorphisms,, International Journal of Bifurcation and Chaos, 1 (1991), 823. doi: 10.1142/S0218127491000609.

[13]

H. Fujikawa, A. Kai and S. Morozomi, A new logistic model for Escherichia coli growth at constant and dynamic temperatures,, Food Microbiology, 21 (2004), 501. doi: 10.1016/j.fm.2004.01.007.

[14]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and J. D. Flores, Uniqueness of limit cycles and multiple attractors in a Gause-type model with nonmonotonic functional response and Allee effect on prey,, Mathematical Biosciences and Engineering (MBE), 10 (2013), 345. doi: 10.3934/mbe.2013.10.345.

[15]

M. Gyllenberg, A. V. Osipov and G. Sderbacka, Bifurcation analysis of a metapopulation model with sources and sinks,, Journal of Nonlinear Science, 6 (1996), 329. doi: 10.1007/BF02433474.

[16]

H. Kawakami, Bifurcations of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters,, IEEE Trans. Circuits and Systems, CAS-31 (1984), 248. doi: 10.1109/TCS.1984.1085495.

[17]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Population Ecology, 51 (2009), 341. doi: 10.1007/s10144-009-0152-6.

[18]

H. D. Kuhi, E. Kebreab, S. Lopez and J. France, A comparative evaluation of functions for describing the relationship between live-weight gain and metabolizable energy intake in turkeys,, J. Agricultural Sci., 142 (2004), 691.

[19]

J. P. Lampreia and J. Sousa Ramos, Symbolic dynamics of bimodal maps,, Portugaliae Math., 54 (1997), 1.

[20]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141. doi: 10.1006/tpbi.1993.1007.

[21]

D. Li, Z. Zhang, Z. Ma, B. Xie and R. Wang, Allee effect and a catastrophe model of population dynamics,, Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 4 (2004), 629. doi: 10.3934/dcdsb.2004.4.629.

[22]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Codings,", $2^{nd}$ edition, (1999). doi: 10.1017/CBO9780511626302.

[23]

G. Livadiotis and S. Elaydi, General Allee effect in two-species population biology,, J. Bio. Dyn., 6 (2012), 959. doi: 10.1080/17513758.2012.700075.

[24]

R. López-Ruiz and D. Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species,, Chaos, 41 (2009), 334. doi: 10.1016/j.chaos.2008.01.015.

[25]

W. Melo and S. van Strien, "One-Dimensional Dynamics,", $1^{nd}$ edition, (1993).

[26]

V. Méndez, C. Sans, I. Lopis and D. Campos, Extinction conditions for isolated populations with Allee effect,, Mathematical Biosciences, 232 (2011), 78. doi: 10.1016/j.mbs.2011.04.005.

[27]

C. Mira, "Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,", World Scientific, (1987).

[28]

C. Mira, L. Gardini, A. Barugola and J-C. Cathala, "Chaotic Dynamics in Two-Dimensional Noninvertible Maps,", World Scientific, (1996). doi: 10.1142/9789812798732.

[29]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polish. Sci., 27 (1979), 167.

[30]

H. T. Odum and W. C. Allee, A note on the stable point of populations showing both intraspecific cooperation and disoperation,, Ecology, 35 (1954), 95. doi: 10.2307/1931412.

[31]

F. J. Richards, A flexible growth function for empirical use,, Journal of Experimental Botany, 10 (1959), 290. doi: 10.1093/jxb/10.2.290.

[32]

J. L. Rocha and S. M. Aleixo, Modeling Allee effect from Beta(p,2) densities,, Proc. ITI 2012, (2012), 461.

[33]

J. L. Rocha and S. M. Aleixo, An extension of Gompertzian growth dynamics: Weibull and Fréchet models,, Mathematical Biosciences and Engineering (MBE), 10 (2013), 379. doi: 10.3934/mbe.2013.10.379.

[34]

J. L. Rocha and S. M. Aleixo, Dynamical analysis in growth models: Blumberg's equation,, Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 18 (2013), 783. doi: 10.3934/dcdsb.2013.18.783.

[35]

S. J. Schreiber, Chaos and population disappearances in simple ecological models,, Journal of Mathematical Biology, 42 (2001), 239. doi: 10.1007/s002850000070.

[36]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theoretical Population Biology, 64 (2003), 201. doi: 10.1016/S0040-5809(03)00072-8.

[37]

O. M. Šarkovs'kiĭ, On cycles and the structure of a continuous mapping,, Ukrain. Math. Ž., 17 (1965), 104.

[38]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185. doi: 10.2307/3547011.

[39]

H. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?,, Journal of Biological Dynamics, 3 (2009), 305. doi: 10.1080/17513750802376313.

[40]

A. Tsoularis and J. Wallace, Analysis of logistic growth models,, Mathematical Biosciences, 179 (2002), 21. doi: 10.1016/S0025-5564(02)00096-2.

[41]

M. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects,, Mathematical Biosciences, 171 (2001), 83. doi: 10.1016/S0025-5564(01)00048-7.

show all references

References:
[1]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational growth models proportional to beta densities with Allee effect,, Amer. Inst. Phys., 1124 (2009), 3.

[2]

S. M. Aleixo and J. L. Rocha, Generalized models from Beta(p,2) densities with strong Allee effect: dynamical approach,, Journal of Computing and Information Technology, 3 (2012), 201. doi: 10.2498/cit.1002098.

[3]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management,, Trends in Ecology & Evolution, 22 (2007), 185. doi: 10.1016/j.tree.2006.12.002.

[4]

C. P. D. Birch, A new generalized logistic sigmoid growth equation compared with the Richards growth equation,, Annals of Botany, 83 (1999), 713. doi: 10.1006/anbo.1999.0877.

[5]

D. S. Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084.

[6]

C. E. Brassil, Mean time to extinction of a metapopulation with an Allee effect,, Ecological Modelling, 143 (2001), 9. doi: 10.1016/S0304-3800(01)00351-9.

[7]

J. P. Carcassès, An algorithm to determine the nature and the transitions of communication areas generated by a one-dimensional map,, in Proc. European Conference on Iteration Theory (ECIT 1991), (1992), 27.

[8]

J. P. Carcassès, Determination of different configurations of fold and flip bifurcation curves of a one or two-dimensional map,, International Journal of Bifurcation and Chaos, 3 (1993), 869. doi: 10.1142/S0218127493000763.

[9]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", $2^{nd}$ edition, (1990).

[10]

S. Elaydi and R. J. Sacker, Population models with Allee effect: A new model,, Journal of Biological Dynamics, 4 (2009), 397. doi: 10.1080/17513750903377434.

[11]

X. Fauvergue, J-C. Malusa, L. Giuge and F. Courchamp, Invading parasitoids suffer no Allee effect: A manipulative field experiment,, Ecology, 88 (2007), 2392. doi: 10.1890/06-1238.1.

[12]

D. Fournier-Prunaret, The bifurcation structure of a family of degree one circle endomorphisms,, International Journal of Bifurcation and Chaos, 1 (1991), 823. doi: 10.1142/S0218127491000609.

[13]

H. Fujikawa, A. Kai and S. Morozomi, A new logistic model for Escherichia coli growth at constant and dynamic temperatures,, Food Microbiology, 21 (2004), 501. doi: 10.1016/j.fm.2004.01.007.

[14]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and J. D. Flores, Uniqueness of limit cycles and multiple attractors in a Gause-type model with nonmonotonic functional response and Allee effect on prey,, Mathematical Biosciences and Engineering (MBE), 10 (2013), 345. doi: 10.3934/mbe.2013.10.345.

[15]

M. Gyllenberg, A. V. Osipov and G. Sderbacka, Bifurcation analysis of a metapopulation model with sources and sinks,, Journal of Nonlinear Science, 6 (1996), 329. doi: 10.1007/BF02433474.

[16]

H. Kawakami, Bifurcations of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters,, IEEE Trans. Circuits and Systems, CAS-31 (1984), 248. doi: 10.1109/TCS.1984.1085495.

[17]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Population Ecology, 51 (2009), 341. doi: 10.1007/s10144-009-0152-6.

[18]

H. D. Kuhi, E. Kebreab, S. Lopez and J. France, A comparative evaluation of functions for describing the relationship between live-weight gain and metabolizable energy intake in turkeys,, J. Agricultural Sci., 142 (2004), 691.

[19]

J. P. Lampreia and J. Sousa Ramos, Symbolic dynamics of bimodal maps,, Portugaliae Math., 54 (1997), 1.

[20]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141. doi: 10.1006/tpbi.1993.1007.

[21]

D. Li, Z. Zhang, Z. Ma, B. Xie and R. Wang, Allee effect and a catastrophe model of population dynamics,, Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 4 (2004), 629. doi: 10.3934/dcdsb.2004.4.629.

[22]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Codings,", $2^{nd}$ edition, (1999). doi: 10.1017/CBO9780511626302.

[23]

G. Livadiotis and S. Elaydi, General Allee effect in two-species population biology,, J. Bio. Dyn., 6 (2012), 959. doi: 10.1080/17513758.2012.700075.

[24]

R. López-Ruiz and D. Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species,, Chaos, 41 (2009), 334. doi: 10.1016/j.chaos.2008.01.015.

[25]

W. Melo and S. van Strien, "One-Dimensional Dynamics,", $1^{nd}$ edition, (1993).

[26]

V. Méndez, C. Sans, I. Lopis and D. Campos, Extinction conditions for isolated populations with Allee effect,, Mathematical Biosciences, 232 (2011), 78. doi: 10.1016/j.mbs.2011.04.005.

[27]

C. Mira, "Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,", World Scientific, (1987).

[28]

C. Mira, L. Gardini, A. Barugola and J-C. Cathala, "Chaotic Dynamics in Two-Dimensional Noninvertible Maps,", World Scientific, (1996). doi: 10.1142/9789812798732.

[29]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polish. Sci., 27 (1979), 167.

[30]

H. T. Odum and W. C. Allee, A note on the stable point of populations showing both intraspecific cooperation and disoperation,, Ecology, 35 (1954), 95. doi: 10.2307/1931412.

[31]

F. J. Richards, A flexible growth function for empirical use,, Journal of Experimental Botany, 10 (1959), 290. doi: 10.1093/jxb/10.2.290.

[32]

J. L. Rocha and S. M. Aleixo, Modeling Allee effect from Beta(p,2) densities,, Proc. ITI 2012, (2012), 461.

[33]

J. L. Rocha and S. M. Aleixo, An extension of Gompertzian growth dynamics: Weibull and Fréchet models,, Mathematical Biosciences and Engineering (MBE), 10 (2013), 379. doi: 10.3934/mbe.2013.10.379.

[34]

J. L. Rocha and S. M. Aleixo, Dynamical analysis in growth models: Blumberg's equation,, Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 18 (2013), 783. doi: 10.3934/dcdsb.2013.18.783.

[35]

S. J. Schreiber, Chaos and population disappearances in simple ecological models,, Journal of Mathematical Biology, 42 (2001), 239. doi: 10.1007/s002850000070.

[36]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theoretical Population Biology, 64 (2003), 201. doi: 10.1016/S0040-5809(03)00072-8.

[37]

O. M. Šarkovs'kiĭ, On cycles and the structure of a continuous mapping,, Ukrain. Math. Ž., 17 (1965), 104.

[38]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185. doi: 10.2307/3547011.

[39]

H. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?,, Journal of Biological Dynamics, 3 (2009), 305. doi: 10.1080/17513750802376313.

[40]

A. Tsoularis and J. Wallace, Analysis of logistic growth models,, Mathematical Biosciences, 179 (2002), 21. doi: 10.1016/S0025-5564(02)00096-2.

[41]

M. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects,, Mathematical Biosciences, 171 (2001), 83. doi: 10.1016/S0025-5564(01)00048-7.

[1]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[2]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[3]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[4]

Eduardo Liz, Alfonso Ruiz-Herrera. Delayed population models with Allee effects and exploitation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 83-97. doi: 10.3934/mbe.2015.12.83

[5]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[6]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[7]

Dongmei Xiao. Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 699-719. doi: 10.3934/dcdsb.2016.21.699

[8]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[9]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[10]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[11]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[12]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[13]

Sophia R.-J. Jang. Allee effects in an iteroparous host population and in host-parasitoid interactions. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 113-135. doi: 10.3934/dcdsb.2011.15.113

[14]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[15]

Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247

[16]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[17]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[18]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[19]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[20]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (7)

[Back to Top]