2013, 18(1): 259-271. doi: 10.3934/dcdsb.2013.18.259

Global dynamics and bifurcations in a four-dimensional replicator system

1. 

School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

Received  October 2011 Revised  April 2012 Published  September 2012

In this paper, the four-dimensional cyclic replicator system $\dot{u}_i = {u}_i [-(Bu)_i + \sum_{j=1}^{4} u_j (Bu)_j ],1\le i \le 4$, with $b_1 = b_3$ is considered, in which the first row of the matrix $B$ is $(0~ b_1~ b_2~ b_3)$ and the other rows of $B$ are cyclic permutations of the first row. Our aim is to study the global dynamics and bifurcations in the system, and to show how and when all but one species go to extinction. By reducing the four-dimensional system to a three-dimensional one, we show that there is no periodic orbit in the system. For the case $b_1 b_2 < 0$, we give complete analysis on the global dynamics. For the case $b_1 b_2 \ge 0$, we extend some results obtained by Diekmann and van Gils (2009). By combining our work with that in Diekmann and van Gils (2009), we present the dynamics and bifurcations of the system on the whole $(b_1, b_2)$-plane. The analysis leads to explanations for the phenomena that in some semelparous species, all but one brood go extinct.
Citation: Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259
References:
[1]

H. Behncke, Periodical cicadas,, J. Math. Biol., 40 (2000), 413. doi: 10.1007/s002850000024.

[2]

M. G. Bulmer, Periodic insects,, Am. Nat., 111 (1977), 1099. doi: 10.1086/283240.

[3]

J. M. Cushing, Nonlinear semelparous Leslie models,, Math. Biosci. Eng., 3 (2006), 17.

[4]

J. M. Cushing, Three stage semelparous Leslie models,, J. Math. Biol., 59 (2009), 75. doi: 10.1007/s00285-008-0208-9.

[5]

N. V. Davydova, O. Diekmann and S. A. van Gils, Year class competition or competitive exclusion for strict biennials,, J. Math. Biol., 46 (2003), 95. doi: 10.1007/s00285-002-0167-5.

[6]

N. V. Davydova, "Old and Young. Can They Coexist,", Thesis, (2004), 2004.

[7]

N. V. Davydova, O. Diekmann and S. A. van Gils, On circulant populations. I. The algebra of semelparity,, Linear Algebra Apl., 398 (2005), 185. doi: 10.1016/j.laa.2004.12.020.

[8]

O. Diekmann and S. A. van Gils, Invariance and symmetry in a year-class model,, in, (2003), 141.

[9]

O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations,, SIAM J. Applied Dynamical Systems, 8 (2009), 1160.

[10]

P. van den Drissche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits,, SIAM J. Appl. Math., 58 (1998), 227. doi: 10.1137/S0036139995294767.

[11]

A. Edalat and E. C. Zeeman, The stable classes of the codimension-one bifurcations of the planar replicator system,, Nonlinearity, 5 (1992), 921.

[12]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).

[13]

R. Kon, Nonexistence of synchronous orbits and class coexistence in matrix population models,, SIAM J. Appl. Math., 66 (2005), 616. doi: 10.1137/05062353X.

[14]

R. Kon and Y. Iwasa, Single-class orbits in nonlinear Leslie matrix models for semelparous populations,, J. Math. Biol., 55 (2007), 781. doi: 10.1007/s00285-007-0111-9.

[15]

E. Mjolhus, A. Wikan and T. Solberg, On synchronization in semelparous populations,, J. Math. Biol., 50 (2005), 1. doi: 10.1007/s00285-004-0275-5.

[16]

J. D. Murry, "Mathematical Biology,", Springer-Verlag, (2003).

[17]

Y. Wang, Necessary and sufficient conditions for the existence of periodic orbits in a Lotka-Volterra system,, J. Math. Anal. Appl., 284 (2003), 236. doi: 10.1016/S0022-247X(03)00340-8.

[18]

Y. Wang, H. Wu and S. Ruan, Periodic orbits near heteroclinic cycles in a cyclic replicator system,, J. Math. Biol., 64 (2012), 855. doi: 10.1007/s00285-011-0435-3.

show all references

References:
[1]

H. Behncke, Periodical cicadas,, J. Math. Biol., 40 (2000), 413. doi: 10.1007/s002850000024.

[2]

M. G. Bulmer, Periodic insects,, Am. Nat., 111 (1977), 1099. doi: 10.1086/283240.

[3]

J. M. Cushing, Nonlinear semelparous Leslie models,, Math. Biosci. Eng., 3 (2006), 17.

[4]

J. M. Cushing, Three stage semelparous Leslie models,, J. Math. Biol., 59 (2009), 75. doi: 10.1007/s00285-008-0208-9.

[5]

N. V. Davydova, O. Diekmann and S. A. van Gils, Year class competition or competitive exclusion for strict biennials,, J. Math. Biol., 46 (2003), 95. doi: 10.1007/s00285-002-0167-5.

[6]

N. V. Davydova, "Old and Young. Can They Coexist,", Thesis, (2004), 2004.

[7]

N. V. Davydova, O. Diekmann and S. A. van Gils, On circulant populations. I. The algebra of semelparity,, Linear Algebra Apl., 398 (2005), 185. doi: 10.1016/j.laa.2004.12.020.

[8]

O. Diekmann and S. A. van Gils, Invariance and symmetry in a year-class model,, in, (2003), 141.

[9]

O. Diekmann and S. A. van Gils, On the cyclic replicator equation and the dynamics of semelparous populations,, SIAM J. Applied Dynamical Systems, 8 (2009), 1160.

[10]

P. van den Drissche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra systems with no periodic orbits,, SIAM J. Appl. Math., 58 (1998), 227. doi: 10.1137/S0036139995294767.

[11]

A. Edalat and E. C. Zeeman, The stable classes of the codimension-one bifurcations of the planar replicator system,, Nonlinearity, 5 (1992), 921.

[12]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).

[13]

R. Kon, Nonexistence of synchronous orbits and class coexistence in matrix population models,, SIAM J. Appl. Math., 66 (2005), 616. doi: 10.1137/05062353X.

[14]

R. Kon and Y. Iwasa, Single-class orbits in nonlinear Leslie matrix models for semelparous populations,, J. Math. Biol., 55 (2007), 781. doi: 10.1007/s00285-007-0111-9.

[15]

E. Mjolhus, A. Wikan and T. Solberg, On synchronization in semelparous populations,, J. Math. Biol., 50 (2005), 1. doi: 10.1007/s00285-004-0275-5.

[16]

J. D. Murry, "Mathematical Biology,", Springer-Verlag, (2003).

[17]

Y. Wang, Necessary and sufficient conditions for the existence of periodic orbits in a Lotka-Volterra system,, J. Math. Anal. Appl., 284 (2003), 236. doi: 10.1016/S0022-247X(03)00340-8.

[18]

Y. Wang, H. Wu and S. Ruan, Periodic orbits near heteroclinic cycles in a cyclic replicator system,, J. Math. Biol., 64 (2012), 855. doi: 10.1007/s00285-011-0435-3.

[1]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[2]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[3]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[4]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[5]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[6]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[7]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[8]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[9]

De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2019037

[10]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[11]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[12]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[13]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[14]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[15]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[16]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[17]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[18]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[19]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[20]

Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]