2013, 18(2): 565-573. doi: 10.3934/dcdsb.2013.18.565

Equicontinuous sweeping processes

1. 

Institute for Information Transmission Problems, Bolshoy Karetny per. 19, Moscow, 127994, Russian Federation

Received  October 2011 Revised  May 2012 Published  November 2012

We prove that the sweeping process on a "regular" class of convex sets is equicontinuous. Classes of polyhedral sets with a given finite set of normal vectors are regular, as well as classes of uniformly strictly convex sets. Regularity is invariant to certain operations on classes of convex sets such as intersection, finite union, arithmetic sum and affine transformation.
Citation: Alexander Vladimirov. Equicontinuous sweeping processes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565
References:
[1]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem with applications,, Stoch. and Stoch. Rep., 35 (1991), 31.

[2]

H. Frankowska, A viability approach to the Skorohod problem,, Stochastics, 14 (1985), 227.

[3]

J. Kelley, "General Topology,", D. Van Nostrand Company, (1957).

[4]

A. A. Vladimirov, A. F. Klepcyn, V. S. Kozyakin, M. A. Krasnosel'skii, E. A. Lifshitz and A. V. Pokrovskii, Vector hysteresis nonlinearities of von Mises-Tresca type (Russian),, Dokl. Akad. Nauk SSSR, 257 (1981), 506.

[5]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1988).

[6]

P. Krejci, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations,", Gakkotosho, (1996).

[7]

P. Krejci and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps,, J. Analysis Appl., 20 (2001), 817.

[8]

P. Krejci and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions,, Set-Valued Anal., 11 (2003), 91. doi: 10.1023/A:1021980201718.

[9]

M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process,, in, 551 (2000), 1.

[10]

M. D. P. Monteiro Marques, Rafle par un convexe semi-continue inferieurement d'interieur non vide en dimension finie,, C.R.Acad.Sci, 229 (1984), 307.

[11]

M. D. P. Monteiro Marques, "Differential Inclusions in Nonsmooth Mechanical Problems-- Shocks and Dry Friction,", Birkhauser, (1993).

[12]

J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,, Journ. of Dif. Eq., 20 (1997), 347.

[13]

A. A. Vladimirov, Does continuity of convex-valued maps survive under intersection?,, in, (2001), 415.

[14]

A. A. Vladimirov and A. F. Kleptsyn, On some hysteresis elements (Russian),, Avtomat. i Telemekh., 7 (1982), 165.

show all references

References:
[1]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem with applications,, Stoch. and Stoch. Rep., 35 (1991), 31.

[2]

H. Frankowska, A viability approach to the Skorohod problem,, Stochastics, 14 (1985), 227.

[3]

J. Kelley, "General Topology,", D. Van Nostrand Company, (1957).

[4]

A. A. Vladimirov, A. F. Klepcyn, V. S. Kozyakin, M. A. Krasnosel'skii, E. A. Lifshitz and A. V. Pokrovskii, Vector hysteresis nonlinearities of von Mises-Tresca type (Russian),, Dokl. Akad. Nauk SSSR, 257 (1981), 506.

[5]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1988).

[6]

P. Krejci, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations,", Gakkotosho, (1996).

[7]

P. Krejci and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps,, J. Analysis Appl., 20 (2001), 817.

[8]

P. Krejci and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions,, Set-Valued Anal., 11 (2003), 91. doi: 10.1023/A:1021980201718.

[9]

M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process,, in, 551 (2000), 1.

[10]

M. D. P. Monteiro Marques, Rafle par un convexe semi-continue inferieurement d'interieur non vide en dimension finie,, C.R.Acad.Sci, 229 (1984), 307.

[11]

M. D. P. Monteiro Marques, "Differential Inclusions in Nonsmooth Mechanical Problems-- Shocks and Dry Friction,", Birkhauser, (1993).

[12]

J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,, Journ. of Dif. Eq., 20 (1997), 347.

[13]

A. A. Vladimirov, Does continuity of convex-valued maps survive under intersection?,, in, (2001), 415.

[14]

A. A. Vladimirov and A. F. Kleptsyn, On some hysteresis elements (Russian),, Avtomat. i Telemekh., 7 (1982), 165.

[1]

Dalila Azzam-Laouir, Fatiha Selamnia. On state-dependent sweeping process in Banach spaces. Evolution Equations & Control Theory, 2018, 7 (2) : 183-196. doi: 10.3934/eect.2018009

[2]

Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100

[3]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[4]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[5]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[6]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[7]

Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 111-120. doi: 10.3934/dcds.1996.2.111

[8]

Ye Chen, Keith W. Hipel, D. Marc Kilgour. A multiple criteria sequential sorting procedure. Journal of Industrial & Management Optimization, 2008, 4 (3) : 407-423. doi: 10.3934/jimo.2008.4.407

[9]

Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, S. H. Pau. A general multipurpose interpolation procedure: the magic points. Communications on Pure & Applied Analysis, 2009, 8 (1) : 383-404. doi: 10.3934/cpaa.2009.8.383

[10]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[11]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[12]

Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403-412. doi: 10.3934/proc.2003.2003.403

[13]

Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301

[14]

Pavel Krejčí, Thomas Roche. Lipschitz continuous data dependence of sweeping processes in BV spaces. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 637-650. doi: 10.3934/dcdsb.2011.15.637

[15]

Ummugul Bulut, Edward J. Allen. Derivation of SDES for a macroevolutionary process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1777-1792. doi: 10.3934/dcdsb.2013.18.1777

[16]

Ming-Jong Yao, Yu-Chun Wang. Theoretical analysis and a search procedure for the joint replenishment problem with deteriorating products. Journal of Industrial & Management Optimization, 2005, 1 (3) : 359-375. doi: 10.3934/jimo.2005.1.359

[17]

Alexandre N. Carvalho, Jan W. Cholewa. NLS-like equations in bounded domains: Parabolic approximation procedure. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 57-77. doi: 10.3934/dcdsb.2018005

[18]

Samir Adly, Ba Khiet Le. Unbounded state-dependent sweeping processes with perturbations in uniformly convex and q-uniformly smooth Banach spaces. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 81-95. doi: 10.3934/naco.2018005

[19]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

[20]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]