-
Previous Article
Robustness of Morphogen gradients with "bucket brigade" transport through membrane-associated non-receptors
- DCDS-B Home
- This Issue
-
Next Article
On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian
Nonlocal generalized models of predator-prey systems
1. | Institute for Analysis and Scientific Computing, Vienna University of Technology, 1040 Vienna, Austria |
2. | Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom |
References:
[1] |
L. Andrianopoli, M. Bertolini, A. Ceresole, R. D'Auria, S. Ferrara, P. Fré and T. Magri, $N=2$ supergravity and $N=2$ super Yang-Mills theory on general scalar manifolds: Symplectic covariance gaugings and the momentum map,, J. Geom. Phys., 23 (1997), 111.
doi: 10.1016/S0393-0440(97)00002-8. |
[2] |
U. M. Ascher, R. M. M. Mattheij and R. D. Russell, "Numerical Solution of Boundary Value Problems for Ordinary Differential Equations,", Classics in Applied Mathematics, 13 (1995).
doi: 10.1137/1.9781611971231. |
[3] |
M. Baurmann, T. Gross and U. Feudel, Instabilities in sptially extended predator-prey systems: Spatio-temporal patterns in the neighbourhood of Turing-Hopf bifurcations,, J. Theor. Bio., 245 (2007), 220.
doi: 10.1016/j.jtbi.2006.09.036. |
[4] |
A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations,", Edited and with a foreword by Alexander I. Khibnik and Bernd Krauskopf, 11 (1998).
doi: 10.1142/9789812798725. |
[5] |
N. Berglund and B. Gentz, "Noise-Induced Phenomena in Slow-Fast Dynamical Systems. A Sample-Paths Approach,", Probability and its Applications (New York), (2006).
|
[6] |
A. A. Berryman, The origins and evolution of predator-prey theory,, Ecol., 73 (1992), 1530. Google Scholar |
[7] |
F. Brauer and C. Castillo-Chávez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).
|
[8] |
M. Braun, "Differential Equations and their Applications,", Hochschultext, (1979).
|
[9] |
C. Chicone, Inertial and slow manifolds for delay differential equations,, J. Diff. Eqs., 190 (2003), 364.
doi: 10.1016/S0022-0396(02)00148-1. |
[10] |
C. Chicone, "Ordinary Differential Equations with Applications,", Second edition, 34 (2006).
|
[11] |
E. J. Doedel, A. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont),, , (2007). Google Scholar |
[12] |
T. F. Fairgrieve and A. D. Jepson, O. K. Floquet multipliers,, SIAM J. Numer. Anal., 28 (1991), 1446.
doi: 10.1137/0728075. |
[13] |
M. I. Freidlin and A. D. Wentzell, "Random Perturbations of Dynamical Systems,", Second edition, (1998).
doi: 10.1007/978-1-4612-0611-8. |
[14] |
C. Gardiner, "Stochastic Methods. A Handbook for the Natural and Social Sciences,", Fourth edition, (2009).
|
[15] |
E. Gehrmann and B. Drossel, Boolean versus continuous dynamics on simple two-gene modules,, Phys. Rev. E (3), 82 (2010).
doi: 10.1103/PhysRevE.82.046120. |
[16] |
B. S. Goh, Global stability in two species interactions,, J. Math. Biol., 3 (1976), 313.
|
[17] |
T. Gross, M. Baurmann, U. Feudel and B. Blasius, Generalized models - a new tool for the investigation of ecological systems,, in, (2006), 21. Google Scholar |
[18] |
T. Gross, C. J. Dommar D'Lima and B. Blasius, Epidemic dynamics on an adaptive network,, Phys. Rev. Lett., 96 (2006). Google Scholar |
[19] |
T. Gross, W. Ebenhöh and U. Feudel, Enrichment and foodchain stability: The impact of different functional forms,, J. Theor. Bio., 227 (2004), 349.
doi: 10.1016/j.jtbi.2003.09.020. |
[20] |
T. Gross, W. Ebenhöh and U. Feudel, Long food chains are in general chaotic,, Oikos, 109 (2005), 133. Google Scholar |
[21] |
T. Gross and U. Feudel, Analytical search for bifurcation surfaces in parameter space,, Physica D, 195 (2004), 292.
doi: 10.1016/j.physd.2004.03.019. |
[22] |
T. Gross and U. Feudel, Generalized models as an universal approach to the analysis of nonlinear dynamical systems,, Phys. Rev. E, 73 (2006), 016205. Google Scholar |
[23] |
T. Gross and U. Feudel, Local dynamical equivalence of certain food webs,, Ocean Dynamics, 59 (2009), 417. Google Scholar |
[24] |
T. Gross, L. Rudolf, S. A. Levin and U. Dieckmann, Generalized models reveal stabilizing factors in food webs,, Science, 325 (2009), 747. Google Scholar |
[25] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Applied Mathematical Sciences, 42 (1983).
|
[26] |
Joe Harris, "Algebraic Geometry. A First Course,", Graduate Texts in Mathematics, 133 (1992).
|
[27] |
Robin Hartshorne, "Algebraic Geometry,", Graduate Texts in Mathematics, (1977).
|
[28] |
A. Hastings, Global stability of two-species systems,, J. Math. Biol., 5 (): 399.
doi: 10.1007/BF00276109. |
[29] |
Y. Katznelson, "An Introduction to Harmonic Analysis,", Third edition, (2004).
|
[30] |
M. J. Keeling, D. A. Rand and A. J. Morris, Correlation models for childhood epidemics,, Proc. R. Soc. B, 264 (1997), 1149. Google Scholar |
[31] |
C. A. Klausmeier, Floquet theory: A useful tool for understanding nonequilibrium dynamics,, Theor. Ecol., 1 (2008), 153. Google Scholar |
[32] |
T. W. Körner, "Fourier Analysis,", CUP, (1989). Google Scholar |
[33] |
M. Kot, "Elements of Mathematical Ecology,", CUP, (2003). Google Scholar |
[34] |
C. Kuehn, A mathematical framework for critical transitions: Normal forms, variance and applications,, submitted, (2011), 1. Google Scholar |
[35] |
C. Kuehn, S. Siegmund and T. Gross, On the analysis of evolution equations via generalized models,, accepted, (2012). Google Scholar |
[36] |
Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", Third edition, 112 (2004).
|
[37] |
S. J. Lade and T. Gross, Early warning signals for critical transitions: A generalized modeling approach,, PLoS Comp. Biol., 8 (2012), 1002360. Google Scholar |
[38] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM J. Optim., 9 (1998), 112.
doi: 10.1137/S1052623496303470. |
[39] |
K. Lust, Improved numerical Floquet multipliers,, Int. J. Bif. Chaos Appl. Sci. Engrg., 11 (2001), 2389.
doi: 10.1142/S0218127401003486. |
[40] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in, (2002), 1015.
doi: 10.1016/S1874-575X(02)80015-7. |
[41] |
The MathWorks, Matlab 2010b, 2010., (with Control and Optimization Toolboxes)., (). Google Scholar |
[42] |
S. M. Moghadas and M. E. Alexander, Dynamics of a generalized {Gauss-type predator-prey model with a seasonal functional response},, Chaos, 23 (2005), 55.
doi: 10.1016/j.chaos.2004.04.030. |
[43] |
J. Nocedal and S. J. Wright, "Numerical Optimization,", Springer Series in Operations Research, (1999).
|
[44] |
E. Reznik and D. Segré, On the stability of metabolic cycles,, J. Theor. Biol., 266 (2010), 536. Google Scholar |
[45] |
M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time,, Science, 171 (1971), 385. Google Scholar |
[46] |
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkhin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara, Early-warning signals for critical transitions,, Nature, 461 (2009), 53. Google Scholar |
[47] |
J. Smillie, Introduction to rational billards,, MSRI Workshop on Geometric Group Theory, (2007). Google Scholar |
[48] |
L. Socha, "Linearization Methods for Stochastic Dynamic Systems,", Lecture Notes in Physics, 730 (2008).
|
[49] |
R. Steuer, T. Gross, J. Selbig and B. Blasius, Structural kinetic modeling of metabolic networks,, Proc. Natl. Acad. Sci., 103 (2006), 11868. Google Scholar |
[50] |
R. Steuer, A. Nunes Nesi, A. R. Fernie, T. Gross, B. Blasius and J. Selbig, From structure to dynamics of metabolic pathways,, Bioinformatics, 23 (2007), 1378. Google Scholar |
[51] |
D. Stiefs, T. Gross, R. Steuer and U. Feudel, Computation and visualization of bifurcation surfaces,, Int. J. Bif. Chaos, 18 (2008), 2191.
doi: 10.1142/S0218127408021658. |
[52] |
D. Stiefs, G. A. K. van Voorn, B. W. Kooi, U. Feudel and T. Gross, Food quality in producer-grazer models,, Am. Nat., 176 (2010), 367. Google Scholar |
[53] |
G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence,, SIAM J. Appl. Math., 48 (1988), 592.
doi: 10.1137/0148033. |
[54] |
J. D. Yeakel, D. Stiefs, M. Novak and T. Gross, Generalized modeling of ecological population dynamics,, Theor. Ecol., 4 (2011), 179. Google Scholar |
[55] |
M. Zumsande, D. Stiefs, S. Siegmund and T. Gross, General analysis of mathematical models for bone remodeling,, Bone, 48 (2011), 910. Google Scholar |
[56] |
A. Zygmund, "Trigonometric Series,", Vol. 1 & 2, (1988). Google Scholar |
show all references
References:
[1] |
L. Andrianopoli, M. Bertolini, A. Ceresole, R. D'Auria, S. Ferrara, P. Fré and T. Magri, $N=2$ supergravity and $N=2$ super Yang-Mills theory on general scalar manifolds: Symplectic covariance gaugings and the momentum map,, J. Geom. Phys., 23 (1997), 111.
doi: 10.1016/S0393-0440(97)00002-8. |
[2] |
U. M. Ascher, R. M. M. Mattheij and R. D. Russell, "Numerical Solution of Boundary Value Problems for Ordinary Differential Equations,", Classics in Applied Mathematics, 13 (1995).
doi: 10.1137/1.9781611971231. |
[3] |
M. Baurmann, T. Gross and U. Feudel, Instabilities in sptially extended predator-prey systems: Spatio-temporal patterns in the neighbourhood of Turing-Hopf bifurcations,, J. Theor. Bio., 245 (2007), 220.
doi: 10.1016/j.jtbi.2006.09.036. |
[4] |
A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations,", Edited and with a foreword by Alexander I. Khibnik and Bernd Krauskopf, 11 (1998).
doi: 10.1142/9789812798725. |
[5] |
N. Berglund and B. Gentz, "Noise-Induced Phenomena in Slow-Fast Dynamical Systems. A Sample-Paths Approach,", Probability and its Applications (New York), (2006).
|
[6] |
A. A. Berryman, The origins and evolution of predator-prey theory,, Ecol., 73 (1992), 1530. Google Scholar |
[7] |
F. Brauer and C. Castillo-Chávez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).
|
[8] |
M. Braun, "Differential Equations and their Applications,", Hochschultext, (1979).
|
[9] |
C. Chicone, Inertial and slow manifolds for delay differential equations,, J. Diff. Eqs., 190 (2003), 364.
doi: 10.1016/S0022-0396(02)00148-1. |
[10] |
C. Chicone, "Ordinary Differential Equations with Applications,", Second edition, 34 (2006).
|
[11] |
E. J. Doedel, A. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, Auto 2007p: Continuation and bifurcation software for ordinary differential equations (with homcont),, , (2007). Google Scholar |
[12] |
T. F. Fairgrieve and A. D. Jepson, O. K. Floquet multipliers,, SIAM J. Numer. Anal., 28 (1991), 1446.
doi: 10.1137/0728075. |
[13] |
M. I. Freidlin and A. D. Wentzell, "Random Perturbations of Dynamical Systems,", Second edition, (1998).
doi: 10.1007/978-1-4612-0611-8. |
[14] |
C. Gardiner, "Stochastic Methods. A Handbook for the Natural and Social Sciences,", Fourth edition, (2009).
|
[15] |
E. Gehrmann and B. Drossel, Boolean versus continuous dynamics on simple two-gene modules,, Phys. Rev. E (3), 82 (2010).
doi: 10.1103/PhysRevE.82.046120. |
[16] |
B. S. Goh, Global stability in two species interactions,, J. Math. Biol., 3 (1976), 313.
|
[17] |
T. Gross, M. Baurmann, U. Feudel and B. Blasius, Generalized models - a new tool for the investigation of ecological systems,, in, (2006), 21. Google Scholar |
[18] |
T. Gross, C. J. Dommar D'Lima and B. Blasius, Epidemic dynamics on an adaptive network,, Phys. Rev. Lett., 96 (2006). Google Scholar |
[19] |
T. Gross, W. Ebenhöh and U. Feudel, Enrichment and foodchain stability: The impact of different functional forms,, J. Theor. Bio., 227 (2004), 349.
doi: 10.1016/j.jtbi.2003.09.020. |
[20] |
T. Gross, W. Ebenhöh and U. Feudel, Long food chains are in general chaotic,, Oikos, 109 (2005), 133. Google Scholar |
[21] |
T. Gross and U. Feudel, Analytical search for bifurcation surfaces in parameter space,, Physica D, 195 (2004), 292.
doi: 10.1016/j.physd.2004.03.019. |
[22] |
T. Gross and U. Feudel, Generalized models as an universal approach to the analysis of nonlinear dynamical systems,, Phys. Rev. E, 73 (2006), 016205. Google Scholar |
[23] |
T. Gross and U. Feudel, Local dynamical equivalence of certain food webs,, Ocean Dynamics, 59 (2009), 417. Google Scholar |
[24] |
T. Gross, L. Rudolf, S. A. Levin and U. Dieckmann, Generalized models reveal stabilizing factors in food webs,, Science, 325 (2009), 747. Google Scholar |
[25] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Applied Mathematical Sciences, 42 (1983).
|
[26] |
Joe Harris, "Algebraic Geometry. A First Course,", Graduate Texts in Mathematics, 133 (1992).
|
[27] |
Robin Hartshorne, "Algebraic Geometry,", Graduate Texts in Mathematics, (1977).
|
[28] |
A. Hastings, Global stability of two-species systems,, J. Math. Biol., 5 (): 399.
doi: 10.1007/BF00276109. |
[29] |
Y. Katznelson, "An Introduction to Harmonic Analysis,", Third edition, (2004).
|
[30] |
M. J. Keeling, D. A. Rand and A. J. Morris, Correlation models for childhood epidemics,, Proc. R. Soc. B, 264 (1997), 1149. Google Scholar |
[31] |
C. A. Klausmeier, Floquet theory: A useful tool for understanding nonequilibrium dynamics,, Theor. Ecol., 1 (2008), 153. Google Scholar |
[32] |
T. W. Körner, "Fourier Analysis,", CUP, (1989). Google Scholar |
[33] |
M. Kot, "Elements of Mathematical Ecology,", CUP, (2003). Google Scholar |
[34] |
C. Kuehn, A mathematical framework for critical transitions: Normal forms, variance and applications,, submitted, (2011), 1. Google Scholar |
[35] |
C. Kuehn, S. Siegmund and T. Gross, On the analysis of evolution equations via generalized models,, accepted, (2012). Google Scholar |
[36] |
Yu. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", Third edition, 112 (2004).
|
[37] |
S. J. Lade and T. Gross, Early warning signals for critical transitions: A generalized modeling approach,, PLoS Comp. Biol., 8 (2012), 1002360. Google Scholar |
[38] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM J. Optim., 9 (1998), 112.
doi: 10.1137/S1052623496303470. |
[39] |
K. Lust, Improved numerical Floquet multipliers,, Int. J. Bif. Chaos Appl. Sci. Engrg., 11 (2001), 2389.
doi: 10.1142/S0218127401003486. |
[40] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in, (2002), 1015.
doi: 10.1016/S1874-575X(02)80015-7. |
[41] |
The MathWorks, Matlab 2010b, 2010., (with Control and Optimization Toolboxes)., (). Google Scholar |
[42] |
S. M. Moghadas and M. E. Alexander, Dynamics of a generalized {Gauss-type predator-prey model with a seasonal functional response},, Chaos, 23 (2005), 55.
doi: 10.1016/j.chaos.2004.04.030. |
[43] |
J. Nocedal and S. J. Wright, "Numerical Optimization,", Springer Series in Operations Research, (1999).
|
[44] |
E. Reznik and D. Segré, On the stability of metabolic cycles,, J. Theor. Biol., 266 (2010), 536. Google Scholar |
[45] |
M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time,, Science, 171 (1971), 385. Google Scholar |
[46] |
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkhin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara, Early-warning signals for critical transitions,, Nature, 461 (2009), 53. Google Scholar |
[47] |
J. Smillie, Introduction to rational billards,, MSRI Workshop on Geometric Group Theory, (2007). Google Scholar |
[48] |
L. Socha, "Linearization Methods for Stochastic Dynamic Systems,", Lecture Notes in Physics, 730 (2008).
|
[49] |
R. Steuer, T. Gross, J. Selbig and B. Blasius, Structural kinetic modeling of metabolic networks,, Proc. Natl. Acad. Sci., 103 (2006), 11868. Google Scholar |
[50] |
R. Steuer, A. Nunes Nesi, A. R. Fernie, T. Gross, B. Blasius and J. Selbig, From structure to dynamics of metabolic pathways,, Bioinformatics, 23 (2007), 1378. Google Scholar |
[51] |
D. Stiefs, T. Gross, R. Steuer and U. Feudel, Computation and visualization of bifurcation surfaces,, Int. J. Bif. Chaos, 18 (2008), 2191.
doi: 10.1142/S0218127408021658. |
[52] |
D. Stiefs, G. A. K. van Voorn, B. W. Kooi, U. Feudel and T. Gross, Food quality in producer-grazer models,, Am. Nat., 176 (2010), 367. Google Scholar |
[53] |
G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence,, SIAM J. Appl. Math., 48 (1988), 592.
doi: 10.1137/0148033. |
[54] |
J. D. Yeakel, D. Stiefs, M. Novak and T. Gross, Generalized modeling of ecological population dynamics,, Theor. Ecol., 4 (2011), 179. Google Scholar |
[55] |
M. Zumsande, D. Stiefs, S. Siegmund and T. Gross, General analysis of mathematical models for bone remodeling,, Bone, 48 (2011), 910. Google Scholar |
[56] |
A. Zygmund, "Trigonometric Series,", Vol. 1 & 2, (1988). Google Scholar |
[1] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[2] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[3] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[4] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[7] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[8] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[9] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[10] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[11] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[12] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[13] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[14] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[15] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[16] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[17] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[18] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[19] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[20] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]