• Previous Article
    A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness
  • DCDS-B Home
  • This Issue
  • Next Article
    An age-structured model with immune response of HIV infection: Modeling and optimal control approach
January  2014, 19(1): 131-152. doi: 10.3934/dcdsb.2014.19.131

Numerical study of two-species chemotaxis models

1. 

Mathematics Department, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States

2. 

Institute of Mathematics, University of Mainz, Staudingerweg 9, 55099 Mainz, Germany

Received  December 2011 Revised  July 2013 Published  December 2013

We first conduct a comparative numerical study of two recently proposed two-species chemotaxis models. We show that different scenarios are possible: depending on the initial masses, either one or both cell densities may blow up, or a global solution may exist. In particular, our numerical results indicate answers on some open questions of possible blow up stated in [4,7]. We then introduce two regularizations of the studied models and demonstrate that their solutions are capable of developing spiky structure without blowing up.
Citation: Alexander Kurganov, Mária Lukáčová-Medvidová. Numerical study of two-species chemotaxis models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 131-152. doi: 10.3934/dcdsb.2014.19.131
References:
[1]

A. Chertock, Y. Epshteyn and A. Kurganov, High-order finite-difference and finite-volume methods for chemotaxis models,, in preparation., ().

[2]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux,, Kinet. Relat. Models, 5 (2012), 51. doi: 10.3934/krm.2012.5.51.

[3]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosc., 56 (1981), 217. doi: 10.1016/0025-5564(81)90055-9.

[4]

C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European J. Appl. Math., 22 (2011), 553. doi: 10.1017/S0956792511000258.

[5]

E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species,, Differential Integral Equations, 25 (2012), 251.

[6]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model,, Differential Integral Equations, 23 (2010), 451.

[7]

E. E. Espejo, K. Vilches and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European J. Appl. Math., 24 (2013), 297. doi: 10.1017/S0956792512000411.

[8]

E. E. Espejo Arenas, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis (Munich), 29 (2009), 317. doi: 10.1524/anly.2009.1029.

[9]

A. Fasano, A. Mancini and M. Primicerio, Equilibrium of two populations subject to chemotaxis,, Math. Models Methods Appl. Sci., 14 (2004), 503. doi: 10.1142/S0218202504003337.

[10]

S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods,, SIAM Rev., 43 (2001), 89. doi: 10.1137/S003614450036757X.

[11]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Normale Superiore, 24 (1997), 633.

[12]

I. Higueras, Characterizing strong stability preserving additive Runge-Kutta methods,, J. Sci. Comput., 39 (2009), 115. doi: 10.1007/s10915-008-9252-2.

[13]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Adv. in Appl. Math., 26 (2001), 280. doi: 10.1006/aama.2001.0721.

[14]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[15]

T. Hillen, K. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 125. doi: 10.3934/dcdsb.2007.7.125.

[16]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. DMV, 105 (2003), 103.

[17]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II,, Jahresber. DMV, 106 (2004), 51.

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[19]

E. F. Keller and L. A. Segel, Model for chemotaxis,, J. Theor. Biol., 30 (1971), 225. doi: 10.1016/0022-5193(71)90050-6.

[20]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Diff. Integral Eqns., 4 (2003), 427.

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type,, Translated from the Russian by S. Smith, 23 (1968).

[22]

K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws,, SIAM J. Sci. Comput., 24 (2003), 1157. doi: 10.1137/S1064827501392880.

[23]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1. doi: 10.1016/0022-0396(88)90147-7.

[24]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411.

[25]

H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws,, J. Comput. Phys., 87 (1990), 408. doi: 10.1016/0021-9991(90)90260-8.

[26]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.

[27]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math: Biophys., 15 (1953), 311. doi: 10.1007/BF02476407.

[28]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics, (2007).

[29]

B. D. Sleeman, M. J. Ward and J. C. Wei, The existence and stability of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790. doi: 10.1137/S0036139902415117.

[30]

P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,, SIAM J. Numer. Anal., 21 (1984), 995. doi: 10.1137/0721062.

[31]

J. J. L. Velázquez, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1198. doi: 10.1137/S0036139903433888.

[32]

J. J. L. Velázquez, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1224. doi: 10.1137/S003613990343389X.

[33]

X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics,, SIAM J. Math. Anal., 31 (2000), 535. doi: 10.1137/S0036141098339897.

[34]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, European J. Appl. Math., 13 (2002), 641. doi: 10.1017/S0956792501004843.

show all references

References:
[1]

A. Chertock, Y. Epshteyn and A. Kurganov, High-order finite-difference and finite-volume methods for chemotaxis models,, in preparation., ().

[2]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux,, Kinet. Relat. Models, 5 (2012), 51. doi: 10.3934/krm.2012.5.51.

[3]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosc., 56 (1981), 217. doi: 10.1016/0025-5564(81)90055-9.

[4]

C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European J. Appl. Math., 22 (2011), 553. doi: 10.1017/S0956792511000258.

[5]

E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species,, Differential Integral Equations, 25 (2012), 251.

[6]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model,, Differential Integral Equations, 23 (2010), 451.

[7]

E. E. Espejo, K. Vilches and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European J. Appl. Math., 24 (2013), 297. doi: 10.1017/S0956792512000411.

[8]

E. E. Espejo Arenas, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis (Munich), 29 (2009), 317. doi: 10.1524/anly.2009.1029.

[9]

A. Fasano, A. Mancini and M. Primicerio, Equilibrium of two populations subject to chemotaxis,, Math. Models Methods Appl. Sci., 14 (2004), 503. doi: 10.1142/S0218202504003337.

[10]

S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods,, SIAM Rev., 43 (2001), 89. doi: 10.1137/S003614450036757X.

[11]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Normale Superiore, 24 (1997), 633.

[12]

I. Higueras, Characterizing strong stability preserving additive Runge-Kutta methods,, J. Sci. Comput., 39 (2009), 115. doi: 10.1007/s10915-008-9252-2.

[13]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Adv. in Appl. Math., 26 (2001), 280. doi: 10.1006/aama.2001.0721.

[14]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[15]

T. Hillen, K. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 125. doi: 10.3934/dcdsb.2007.7.125.

[16]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. DMV, 105 (2003), 103.

[17]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II,, Jahresber. DMV, 106 (2004), 51.

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[19]

E. F. Keller and L. A. Segel, Model for chemotaxis,, J. Theor. Biol., 30 (1971), 225. doi: 10.1016/0022-5193(71)90050-6.

[20]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Diff. Integral Eqns., 4 (2003), 427.

[21]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type,, Translated from the Russian by S. Smith, 23 (1968).

[22]

K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws,, SIAM J. Sci. Comput., 24 (2003), 1157. doi: 10.1137/S1064827501392880.

[23]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1. doi: 10.1016/0022-0396(88)90147-7.

[24]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411.

[25]

H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws,, J. Comput. Phys., 87 (1990), 408. doi: 10.1016/0021-9991(90)90260-8.

[26]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.

[27]

C. S. Patlak, Random walk with persistence and external bias,, Bull. Math: Biophys., 15 (1953), 311. doi: 10.1007/BF02476407.

[28]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics, (2007).

[29]

B. D. Sleeman, M. J. Ward and J. C. Wei, The existence and stability of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790. doi: 10.1137/S0036139902415117.

[30]

P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,, SIAM J. Numer. Anal., 21 (1984), 995. doi: 10.1137/0721062.

[31]

J. J. L. Velázquez, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1198. doi: 10.1137/S0036139903433888.

[32]

J. J. L. Velázquez, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions,, SIAM J. Appl. Math., 64 (2004), 1224. doi: 10.1137/S003613990343389X.

[33]

X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics,, SIAM J. Math. Anal., 31 (2000), 535. doi: 10.1137/S0036141098339897.

[34]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, European J. Appl. Math., 13 (2002), 641. doi: 10.1017/S0956792501004843.

[1]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[2]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[3]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

[4]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[5]

Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2017, 12 (11) : 1-20. doi: 10.3934/dcdsb.2019066

[6]

Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

[7]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[8]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[9]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[10]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[11]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[12]

Juan Luis Vázquez. Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 1-35. doi: 10.3934/dcds.2007.19.1

[13]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[14]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[15]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[16]

Tai-Chia Lin, Zhi-An Wang. Development of traveling waves in an interacting two-species chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2907-2927. doi: 10.3934/dcds.2014.34.2907

[17]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[18]

Cheng Zheng. Sparse equidistribution of unipotent orbits in finite-volume quotients of $\text{PSL}(2,\mathbb R)$. Journal of Modern Dynamics, 2016, 10: 1-21. doi: 10.3934/jmd.2016.10.1

[19]

Samuel C. Edwards. On the rate of equidistribution of expanding horospheres in finite-volume quotients of SL(2, ${\mathbb{C}}$). Journal of Modern Dynamics, 2017, 11: 155-188. doi: 10.3934/jmd.2017008

[20]

Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (8)

[Back to Top]