-
Previous Article
The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime
- DCDS-B Home
- This Issue
-
Next Article
Latent self-exciting point process model for spatial-temporal networks
Rethinking centrality: The role of dynamical processes in social network analysis
1. | Robert Bosch LLC, 4005 Miranda Ave, Palo Alto, CA 94304, United States |
2. | USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, United States |
References:
[1] |
R. M. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control,, Oxford University Press, (1991). Google Scholar |
[2] |
N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications,, Griffin, (1975).
|
[3] |
E. Bakshy, J. M. Hofman, W. A. Mason and D. J. Watts, Everyone's an influencer: Quantifying influence on twitter,, in Proc. the fourth ACM Int. Conf. on Web search and data mining, (2011), 65.
doi: 10.1145/1935826.1935845. |
[4] |
A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks,, 1st edition, (2008).
doi: 10.1017/CBO9780511791383. |
[5] |
L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser and C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models,, Physica A: Statistical Mechanics and its Applications, 364 (2006), 513.
doi: 10.1016/j.physa.2005.08.083. |
[6] |
P. Boldi, M. Santini and S. Vigna, Pagerank as a function of the damping factor,, in Proc. the 14th Int. Conf. on World Wide Web, (2005), 557.
doi: 10.1145/1060745.1060827. |
[7] |
P. Bonacich, Factoring and weighting approaches to status scores and clique identification,, Journal of Mathematical Sociology, 2 (1972), 113.
doi: 10.1080/0022250X.1972.9989806. |
[8] |
P. Bonacich, Power and centrality: A family of measures,, The American Journal of Sociology, 92 (1987), 1170.
doi: 10.1086/228631. |
[9] |
P. Bonacich and P. Lloyd, Eigenvector-like measures of centrality for asymmetric relations,, Social Networks, 23 (2001), 191.
doi: 10.1016/S0378-8733(01)00038-7. |
[10] |
S. Borgatti, Centrality and network flow,, Social Networks, 27 (2005), 55.
doi: 10.1016/j.socnet.2004.11.008. |
[11] |
S. Borgatti and M. Everett, A graph-theoretic perspective on centrality,, Social Networks, 28 (2006), 466.
doi: 10.1016/j.socnet.2005.11.005. |
[12] |
J. J. Brown and P. H. Reingen, Social ties and Word-of-Mouth referral behavior,, The Journal of Consumer Research, 14 (1987), 350.
doi: 10.1086/209118. |
[13] |
D. Centola and M. Macy, Complex contagions and the weakness of long ties,, American Journal of Sociology, 113 (2007), 702.
doi: 10.1086/521848. |
[14] |
M. Cha, H. Haddadi, F. Benevenuto and K. P. Gummadi, Measuring User Influence in Twitter: The Million Follower Fallacy,, in Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), (2010). Google Scholar |
[15] |
K. Dietz, The estimation of the basic reproduction number for infectious diseases,, Statistical methods in medical research, 2 (1993), 23.
doi: 10.1177/096228029300200103. |
[16] |
E. Estrada, N. Hatano and M. Benzi, The physics of communicability in complex networks,, Physics Reports, 514 (2012), 89.
doi: 10.1016/j.physrep.2012.01.006. |
[17] |
S. Fortunato and A. Flammini, Random walks on directed networks: The case of pageRank,, International Journal of Bifurcation and Chaos, 17 (2007), 2343.
doi: 10.1142/S0218127407018439. |
[18] |
L. C. Freeman, A set of measures of centrality based on betweenness,, Sociometry, 40 (1977), 35.
doi: 10.2307/3033543. |
[19] |
F. Gebali, Markov chains.,, Analysis of Computer and Communication Networks, (). Google Scholar |
[20] |
R. Ghosh and K. Lerman, Predicting Influential Users in Online Social Networks,, in Proc. KDD workshop on Social Network Analysis (SNAKDD), (2010). Google Scholar |
[21] |
R. Ghosh and K. Lerman, A Framework for Quantitative Analysis of Cascades on Networks,, in Proc. Web Search and Data Mining Conference (WSDM), (2011), 665.
doi: 10.1145/1935826.1935917. |
[22] |
R. Ghosh and K. Lerman, Parameterized centrality metric for network analysis,, Physical Review E, 83 (2011).
doi: 10.1103/PhysRevE.83.066118. |
[23] |
R. Ghosh, T. Surachawala and K. Lerman, Entropy-based classification of ‘retweeting' activity on twitter,, in Proc. KDD workshop on Social Network Analysis (SNA-KDD), (2011). Google Scholar |
[24] |
D. F. Gleich, P. G. Constantine, A. D. Flaxman and A. Gunawardana, Tracking the random surfer: Empirically measured teleportation parameters in PageRank,, in Proc. 19th international conference on World wide web, (2010), 381.
doi: 10.1145/1772690.1772730. |
[25] |
S. Goel, D. J. Watts and D. G. Goldstein, The structure of online diffusion networks,, in Proc. 13th ACM Conference on Electronic Commerce (EC 2012), (2012), 623.
doi: 10.1145/2229012.2229058. |
[26] |
J. Goldenberg, B. Libai and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth,, Marketing Letters, (): 211. Google Scholar |
[27] |
H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.
doi: 10.1137/S0036144500371907. |
[28] |
N. Hodas and K. Lerman, How limited visibility and divided attention constrain social contagion,, in submitted to Social Computing, (2012). Google Scholar |
[29] |
N. O. Hodas and K. Lerman, The simple rules of social contagion,, Scientific Reports, 4 (2014).
doi: 10.1038/srep04343. |
[30] |
T. Hogg and K. Lerman, Stochastic models of user-contributory web sites,, in Proc. 3rd Int. Conf. on Weblogs and Social Media (ICWSM), (2009). Google Scholar |
[31] |
T. Hogg and K. Lerman, Social Dynamics of Digg,, EPJ Data Science, 5 (2012). Google Scholar |
[32] |
J. L. Iribarren and E. Moro, Impact of human activity patterns on the dynamics of information diffusion,, Physical Review Letters, 103 (2009).
doi: 10.1103/PhysRevLett.103.038702. |
[33] |
G. Jeh and J. Widom, Scaling personalized web search,, in Proc. the 12th Int. Conf. on World Wide Web, (2003), 271.
doi: 10.1145/775189.775191. |
[34] |
E. Katz and P. Lazarsfeld, Personal Influence: The Part Played by People in the Flow of Mass Communications,, Transaction Publishers, (2005). Google Scholar |
[35] |
L. Katz, A new status index derived from sociometric analysis,, Psychometrika, 18 (1953), 39.
doi: 10.1007/BF02289026. |
[36] |
D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network,, KDD '03 Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, (2003), 137.
doi: 10.1145/956755.956769. |
[37] |
C. Kiss and M. Bichler, Identiffication of influencers-measuring influence in customer networks,, Decision Support Systems, 46 (2008), 233. Google Scholar |
[38] |
S. Kotz and N. Balakrishnan, Advances in urn models during the past two decades,, in Advances in combinatorial methods and applications to probability and statistics, (1997), 203.
|
[39] |
, R. Lambiotte, J. C. Delvenne and M. Barahona,, Laplacian dynamics and multiscale modular structure in networks., (). Google Scholar |
[40] |
R. Lambiotte, R. Sinatra, J. C. Delvenne, T. S. Evans, M. Barahona and V. Latora, Flow graphs: Interweaving dynamics and structure,, Physical Review E, 84 (2011).
doi: 10.1103/PhysRevE.84.017102. |
[41] |
C. Lee, H. Kwak, H. Park and S. Moon, Finding Influentials from Temporal Order of Information Adoption in Twitter,, Proc. 19th World-Wide Web (WWW) Conference (Poster), (2010). Google Scholar |
[42] |
K. Lerman and R. Ghosh, Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks,, Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), (2010). Google Scholar |
[43] |
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web,, Technical report, (1998). Google Scholar |
[44] |
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks,, Physical Review Letters, 86 (2001), 3200.
doi: 10.1103/PhysRevLett.86.3200. |
[45] |
B. A. Prakash, D. Chakrabartiy, M. Faloutsos, N. Valler and C. Faloutsos, Threshold conditions for arbitrary cascade models on arbitrary networks,, in Proc. the Int. Conf. on Data Mining, (2011), 537.
doi: 10.1109/ICDM.2011.145. |
[46] |
E. M. Rogers, Diffusion of Innovations, 5th Edition,, Free Press, (2003). Google Scholar |
[47] |
D. M. Romero, W. Galuba, S. Asur and B. A. Huberman, Influence and passivity in social media,, in Proc. the 20th international Conference on World wide web, (2011), 113.
doi: 10.1145/1963192.1963250. |
[48] |
H. Tong, C. Faloutsos and J. Pan, Fast random walk with restart and its applications,, in ICDM '06: Proc. the Sixth Int. Conf. on Data Mining, (2006), 613.
doi: 10.1109/ICDM.2006.70. |
[49] |
M. Trusov, A. V. Bodapati and R. E. Bucklin, Determining influential users in internet social networks,, Journal of Marketing Research, 47 (2010), 643.
doi: 10.1509/jmkr.47.4.643. |
[50] |
G. Ver Steeg, R. Ghosh and K. Lerman, What stops social epidemics?,, in Proc. 5th International AAAI Conference on Weblogs and Social Media (ICWSM), (2011). Google Scholar |
[51] |
Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint,, Reliable Distributed Systems, 0 (2003). Google Scholar |
[52] |
D. J. Watts and P. S. Dodds, Influentials, networks, and public opinion formation,, Journal of Consumer Research, 34 (2007), 441.
doi: 10.1086/518527. |
show all references
References:
[1] |
R. M. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control,, Oxford University Press, (1991). Google Scholar |
[2] |
N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications,, Griffin, (1975).
|
[3] |
E. Bakshy, J. M. Hofman, W. A. Mason and D. J. Watts, Everyone's an influencer: Quantifying influence on twitter,, in Proc. the fourth ACM Int. Conf. on Web search and data mining, (2011), 65.
doi: 10.1145/1935826.1935845. |
[4] |
A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks,, 1st edition, (2008).
doi: 10.1017/CBO9780511791383. |
[5] |
L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser and C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models,, Physica A: Statistical Mechanics and its Applications, 364 (2006), 513.
doi: 10.1016/j.physa.2005.08.083. |
[6] |
P. Boldi, M. Santini and S. Vigna, Pagerank as a function of the damping factor,, in Proc. the 14th Int. Conf. on World Wide Web, (2005), 557.
doi: 10.1145/1060745.1060827. |
[7] |
P. Bonacich, Factoring and weighting approaches to status scores and clique identification,, Journal of Mathematical Sociology, 2 (1972), 113.
doi: 10.1080/0022250X.1972.9989806. |
[8] |
P. Bonacich, Power and centrality: A family of measures,, The American Journal of Sociology, 92 (1987), 1170.
doi: 10.1086/228631. |
[9] |
P. Bonacich and P. Lloyd, Eigenvector-like measures of centrality for asymmetric relations,, Social Networks, 23 (2001), 191.
doi: 10.1016/S0378-8733(01)00038-7. |
[10] |
S. Borgatti, Centrality and network flow,, Social Networks, 27 (2005), 55.
doi: 10.1016/j.socnet.2004.11.008. |
[11] |
S. Borgatti and M. Everett, A graph-theoretic perspective on centrality,, Social Networks, 28 (2006), 466.
doi: 10.1016/j.socnet.2005.11.005. |
[12] |
J. J. Brown and P. H. Reingen, Social ties and Word-of-Mouth referral behavior,, The Journal of Consumer Research, 14 (1987), 350.
doi: 10.1086/209118. |
[13] |
D. Centola and M. Macy, Complex contagions and the weakness of long ties,, American Journal of Sociology, 113 (2007), 702.
doi: 10.1086/521848. |
[14] |
M. Cha, H. Haddadi, F. Benevenuto and K. P. Gummadi, Measuring User Influence in Twitter: The Million Follower Fallacy,, in Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), (2010). Google Scholar |
[15] |
K. Dietz, The estimation of the basic reproduction number for infectious diseases,, Statistical methods in medical research, 2 (1993), 23.
doi: 10.1177/096228029300200103. |
[16] |
E. Estrada, N. Hatano and M. Benzi, The physics of communicability in complex networks,, Physics Reports, 514 (2012), 89.
doi: 10.1016/j.physrep.2012.01.006. |
[17] |
S. Fortunato and A. Flammini, Random walks on directed networks: The case of pageRank,, International Journal of Bifurcation and Chaos, 17 (2007), 2343.
doi: 10.1142/S0218127407018439. |
[18] |
L. C. Freeman, A set of measures of centrality based on betweenness,, Sociometry, 40 (1977), 35.
doi: 10.2307/3033543. |
[19] |
F. Gebali, Markov chains.,, Analysis of Computer and Communication Networks, (). Google Scholar |
[20] |
R. Ghosh and K. Lerman, Predicting Influential Users in Online Social Networks,, in Proc. KDD workshop on Social Network Analysis (SNAKDD), (2010). Google Scholar |
[21] |
R. Ghosh and K. Lerman, A Framework for Quantitative Analysis of Cascades on Networks,, in Proc. Web Search and Data Mining Conference (WSDM), (2011), 665.
doi: 10.1145/1935826.1935917. |
[22] |
R. Ghosh and K. Lerman, Parameterized centrality metric for network analysis,, Physical Review E, 83 (2011).
doi: 10.1103/PhysRevE.83.066118. |
[23] |
R. Ghosh, T. Surachawala and K. Lerman, Entropy-based classification of ‘retweeting' activity on twitter,, in Proc. KDD workshop on Social Network Analysis (SNA-KDD), (2011). Google Scholar |
[24] |
D. F. Gleich, P. G. Constantine, A. D. Flaxman and A. Gunawardana, Tracking the random surfer: Empirically measured teleportation parameters in PageRank,, in Proc. 19th international conference on World wide web, (2010), 381.
doi: 10.1145/1772690.1772730. |
[25] |
S. Goel, D. J. Watts and D. G. Goldstein, The structure of online diffusion networks,, in Proc. 13th ACM Conference on Electronic Commerce (EC 2012), (2012), 623.
doi: 10.1145/2229012.2229058. |
[26] |
J. Goldenberg, B. Libai and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth,, Marketing Letters, (): 211. Google Scholar |
[27] |
H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.
doi: 10.1137/S0036144500371907. |
[28] |
N. Hodas and K. Lerman, How limited visibility and divided attention constrain social contagion,, in submitted to Social Computing, (2012). Google Scholar |
[29] |
N. O. Hodas and K. Lerman, The simple rules of social contagion,, Scientific Reports, 4 (2014).
doi: 10.1038/srep04343. |
[30] |
T. Hogg and K. Lerman, Stochastic models of user-contributory web sites,, in Proc. 3rd Int. Conf. on Weblogs and Social Media (ICWSM), (2009). Google Scholar |
[31] |
T. Hogg and K. Lerman, Social Dynamics of Digg,, EPJ Data Science, 5 (2012). Google Scholar |
[32] |
J. L. Iribarren and E. Moro, Impact of human activity patterns on the dynamics of information diffusion,, Physical Review Letters, 103 (2009).
doi: 10.1103/PhysRevLett.103.038702. |
[33] |
G. Jeh and J. Widom, Scaling personalized web search,, in Proc. the 12th Int. Conf. on World Wide Web, (2003), 271.
doi: 10.1145/775189.775191. |
[34] |
E. Katz and P. Lazarsfeld, Personal Influence: The Part Played by People in the Flow of Mass Communications,, Transaction Publishers, (2005). Google Scholar |
[35] |
L. Katz, A new status index derived from sociometric analysis,, Psychometrika, 18 (1953), 39.
doi: 10.1007/BF02289026. |
[36] |
D. Kempe, J. Kleinberg and E. Tardos, Maximizing the spread of influence through a social network,, KDD '03 Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, (2003), 137.
doi: 10.1145/956755.956769. |
[37] |
C. Kiss and M. Bichler, Identiffication of influencers-measuring influence in customer networks,, Decision Support Systems, 46 (2008), 233. Google Scholar |
[38] |
S. Kotz and N. Balakrishnan, Advances in urn models during the past two decades,, in Advances in combinatorial methods and applications to probability and statistics, (1997), 203.
|
[39] |
, R. Lambiotte, J. C. Delvenne and M. Barahona,, Laplacian dynamics and multiscale modular structure in networks., (). Google Scholar |
[40] |
R. Lambiotte, R. Sinatra, J. C. Delvenne, T. S. Evans, M. Barahona and V. Latora, Flow graphs: Interweaving dynamics and structure,, Physical Review E, 84 (2011).
doi: 10.1103/PhysRevE.84.017102. |
[41] |
C. Lee, H. Kwak, H. Park and S. Moon, Finding Influentials from Temporal Order of Information Adoption in Twitter,, Proc. 19th World-Wide Web (WWW) Conference (Poster), (2010). Google Scholar |
[42] |
K. Lerman and R. Ghosh, Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks,, Proc. 4th Int. Conf. on Weblogs and Social Media (ICWSM), (2010). Google Scholar |
[43] |
L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web,, Technical report, (1998). Google Scholar |
[44] |
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks,, Physical Review Letters, 86 (2001), 3200.
doi: 10.1103/PhysRevLett.86.3200. |
[45] |
B. A. Prakash, D. Chakrabartiy, M. Faloutsos, N. Valler and C. Faloutsos, Threshold conditions for arbitrary cascade models on arbitrary networks,, in Proc. the Int. Conf. on Data Mining, (2011), 537.
doi: 10.1109/ICDM.2011.145. |
[46] |
E. M. Rogers, Diffusion of Innovations, 5th Edition,, Free Press, (2003). Google Scholar |
[47] |
D. M. Romero, W. Galuba, S. Asur and B. A. Huberman, Influence and passivity in social media,, in Proc. the 20th international Conference on World wide web, (2011), 113.
doi: 10.1145/1963192.1963250. |
[48] |
H. Tong, C. Faloutsos and J. Pan, Fast random walk with restart and its applications,, in ICDM '06: Proc. the Sixth Int. Conf. on Data Mining, (2006), 613.
doi: 10.1109/ICDM.2006.70. |
[49] |
M. Trusov, A. V. Bodapati and R. E. Bucklin, Determining influential users in internet social networks,, Journal of Marketing Research, 47 (2010), 643.
doi: 10.1509/jmkr.47.4.643. |
[50] |
G. Ver Steeg, R. Ghosh and K. Lerman, What stops social epidemics?,, in Proc. 5th International AAAI Conference on Weblogs and Social Media (ICWSM), (2011). Google Scholar |
[51] |
Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint,, Reliable Distributed Systems, 0 (2003). Google Scholar |
[52] |
D. J. Watts and P. S. Dodds, Influentials, networks, and public opinion formation,, Journal of Consumer Research, 34 (2007), 441.
doi: 10.1086/518527. |
[1] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[2] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[3] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[4] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[5] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[6] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[7] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
[8] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[9] |
Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021020 |
[10] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[11] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[12] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[13] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[14] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[15] |
Jing Zhang, Jianquan Lu, Jinde Cao, Wei Huang, Jianhua Guo, Yun Wei. Traffic congestion pricing via network congestion game approach. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1553-1567. doi: 10.3934/dcdss.2020378 |
[16] |
Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1479-1494. doi: 10.3934/dcdss.2020374 |
[17] |
Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021040 |
[18] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[19] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[20] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]