July  2014, 19(5): 1411-1436. doi: 10.3934/dcdsb.2014.19.1411

Two-species particle aggregation and stability of co-dimension one solutions

1. 

University of California, Los Angeles, Department of Mathematics, Box 951555, Los Angeles, CA 90095-1555, United States

2. 

Dalhousie University, Department of Mathematics and Statistics, Halifax, Nova Scotia, B3H 3J5

3. 

University of California Los Angeles, Department of Mathematics, 520 Portola Plaza Box 951555, Los Angeles, CA 90095-1555

Received  May 2013 Revised  January 2014 Published  April 2014

Systems of pairwise-interacting particles model a cornucopia of physical systems, from insect swarms and bacterial colonies to nanoparticle self-assembly. We study a continuum model with densities supported on co-dimension one curves for two-species particle interaction in $\mathbb{R}^2$, and apply linear stability analysis of concentric ring steady states to characterize the steady state patterns and instabilities which form. Conditions for linear well-posedness are determined and these results are compared to simulations of the discrete particle dynamics, showing predictive power of the linear theory. Some intriguing steady state patterns are shown through numerical examples.
Citation: Alan Mackey, Theodore Kolokolnikov, Andrea L. Bertozzi. Two-species particle aggregation and stability of co-dimension one solutions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1411-1436. doi: 10.3934/dcdsb.2014.19.1411
References:
[1]

E. Altschuler, T. Williams, E. Ratner, R. Tipton, R. Stong, F. Dowla and F. Wooten, Possible global minimum lattice configurations for Thomson's problem of charges on a sphere,, Physical Review Letters, 78 (1997), 2681. doi: 10.1103/PhysRevLett.78.2681.

[2]

D. Balague, J.A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy,, Archive for Rational Mechanics and Analysis, 209 (2013), 1055. doi: 10.1007/s00205-013-0644-6.

[3]

A. Bernoff and C. Topaz, A primer of swarm equilibria,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 212. doi: 10.1137/100804504.

[4]

A. L. Bertozzi, H. Sun, T. Kolokolnikov, D. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms,, preprint, (2013).

[5]

H. Cabral and D. Schmidt, Stability of relative equilibria in the problem of $n+1$ vortices,, SIAM Journal on Mathematical Analysis, 31 (1999), 231. doi: 10.1137/S0036141098302124.

[6]

Y. Chen, T. Kolokolnikov and D. Zhirov, Collective behaviour of large number of vortices in the plane,, Proceedings of the Royal Society A, 469 (2013). doi: 10.1098/rspa.2013.0085.

[7]

H. Cohn and A. Kumar, Algorithmic design of self-assembling structures,, PNAS, 106 (2009), 9570. doi: 10.1073/pnas.0901636106.

[8]

C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European Journal of Applied Mathematics, 22 (2011), 553. doi: 10.1017/S0956792511000258.

[9]

I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move,, Nature, 433 (2005), 513. doi: 10.1038/nature03236.

[10]

G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications, 20 (2013), 523. doi: 10.1007/s00030-012-0164-3.

[11]

M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse,, Physical Review Letters, 96 (2006). doi: 10.1103/PhysRevLett.96.104302.

[12]

B. Düring, P. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders,, Proceedings of the Royal Society A, 465 (2009), 3687. doi: 10.1098/rspa.2009.0239.

[13]

C. Escudero, F. Macià, and J.J.L. Velázquez, Two-species-coagulation approach to consensus by group level interactions,, Physical Review E, 82 (2010). doi: 10.1103/PhysRevE.82.016113.

[14]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317. doi: 10.1524/anly.2009.1029.

[15]

R. C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model,, Nonlinearity, 24 (2011), 2681. doi: 10.1088/0951-7715/24/10/002.

[16]

M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species,, Nonlinearity, 26 (2013), 2777. doi: 10.1088/0951-7715/26/10/2777.

[17]

J. M. Haile, Molecular Dynamics Simulation: Elementary Methods,, 1st ed., (1992).

[18]

D. Holm and V. Putkaradze, Aggregation of finite-size particles with variable mobility,, Physical Review Letters, 95 (2005). doi: 10.1103/PhysRevLett.95.226106.

[19]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, Journal of Nonlinear Science, 21 (2011), 231. doi: 10.1007/s00332-010-9082-x.

[20]

T. Kolokolnikov, Y. Huang and M. Pavlovski, Singular patterns for an aggregation model with a confining potential,, Physica D, 260 (2013), 65. doi: 10.1016/j.physd.2012.10.009.

[21]

T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions,, Physical Review E, 84 (2011). doi: 10.1103/PhysRevE.84.015203.

[22]

T. Kostić and A. L. Bertozzi, Statistical density estimation using threshold dynamics for geometric motion,, Journal of Scientific Computing, 54 (2013), 513. doi: 10.1007/s10915-012-9615-6.

[23]

H. Levine, E. Ben-Jacob, I. Cohen and W. Rappel, Swarming patterns in microorganisms: Some new modeling results,, in Decision and Control, (2006), 5073. doi: 10.1109/CDC.2006.377435.

[24]

H. Levine, W. Rappel and I. Cohen, Self-organization in systems of self-propelled particles,, Physical Review E, 63 (2000). doi: 10.1103/PhysRevE.63.017101.

[25]

Y. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system,, Physica D, 232 (2007), 33. doi: 10.1016/j.physd.2007.05.007.

[26]

Y. Chuang, Y. R. Huang, M. R. D'Orsogna and A. L. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials,, in IEEE International Conference on Robotics and Automation, (2007), 2292. doi: 10.1109/ROBOT.2007.363661.

[27]

T. Liu, Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale?,, Langmuir, 26 (2010), 9202. doi: 10.1021/la902917q.

[28]

T. Liu, M. Langston, D. Li, J. M. Pigga, C. Pichon, A. Todea and A. Müller, Self-recognition among different polyprotic macroions during assembly processes in dilute solution,, Science, 331 (2011), 1590. doi: 10.1126/science.1201121.

[29]

A. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).

[30]

A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation,, Journal of mathematical biology, 47 (2003), 353. doi: 10.1007/s00285-003-0209-7.

[31]

R. Ramírez and T. Pöschel, Coefficient of restitution of colliding viscoelastic spheres,, Physica Review E, 60 (1999). doi: 10.1103/physreve.60.4465.

[32]

R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012). doi: 10.1142/S0218202511500230.

[33]

H. Sun, D. Uminsky and A. L. Bertozzi, A generalized Birkhoff-Rott equation for two-dimensional active scalar problems,, SIAM Journal on Applied Mathematics, 72 (2012), 382. doi: 10.1137/110819883.

[34]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source,, Nonlinearity, 25 (2012), 1413. doi: 10.1088/0951-7715/25/5/1413.

[35]

C. Topaz, A. Bernoff, S. Logan and W. Toolson, A model for rolling swarms of locusts,, The European Physical Journal Special Topics, 157 (2008), 93. doi: 10.1140/epjst/e2008-00633-y.

[36]

C. Topaz, A. L. Bertozzi and M. E. Lewis, A nonlocal continuum model for biological aggregations,, Bulletin of Mathematical Biology, 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6.

[37]

L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet and W. N. Reynolds, Aggregation patterns in stressed bacteria,, Physical review letters, 75 (1995), 1859. doi: 10.1103/PhysRevLett.75.1859.

[38]

J. von Brecht and D. Uminsky, On soccer balls and linearized inverse statistical mechanics,, Journal of Nonlinear Science, 22 (2012), 935. doi: 10.1007/s00332-012-9132-7.

[39]

J. von Brecht, D. Uminsky, T. Kolokolnikov and A. L. Bertozzi, Predicting pattern formation in particle interactions,, Mathematical Models and Methods in Applied Sciences, 22 (2012). doi: 10.1142/S0218202511400021.

[40]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, European Journal of Applied Mathematics, 13 (2002), 641. doi: 10.1017/S0956792501004843.

show all references

References:
[1]

E. Altschuler, T. Williams, E. Ratner, R. Tipton, R. Stong, F. Dowla and F. Wooten, Possible global minimum lattice configurations for Thomson's problem of charges on a sphere,, Physical Review Letters, 78 (1997), 2681. doi: 10.1103/PhysRevLett.78.2681.

[2]

D. Balague, J.A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy,, Archive for Rational Mechanics and Analysis, 209 (2013), 1055. doi: 10.1007/s00205-013-0644-6.

[3]

A. Bernoff and C. Topaz, A primer of swarm equilibria,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 212. doi: 10.1137/100804504.

[4]

A. L. Bertozzi, H. Sun, T. Kolokolnikov, D. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms,, preprint, (2013).

[5]

H. Cabral and D. Schmidt, Stability of relative equilibria in the problem of $n+1$ vortices,, SIAM Journal on Mathematical Analysis, 31 (1999), 231. doi: 10.1137/S0036141098302124.

[6]

Y. Chen, T. Kolokolnikov and D. Zhirov, Collective behaviour of large number of vortices in the plane,, Proceedings of the Royal Society A, 469 (2013). doi: 10.1098/rspa.2013.0085.

[7]

H. Cohn and A. Kumar, Algorithmic design of self-assembling structures,, PNAS, 106 (2009), 9570. doi: 10.1073/pnas.0901636106.

[8]

C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in $\mathbbR^2$,, European Journal of Applied Mathematics, 22 (2011), 553. doi: 10.1017/S0956792511000258.

[9]

I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move,, Nature, 433 (2005), 513. doi: 10.1038/nature03236.

[10]

G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications, 20 (2013), 523. doi: 10.1007/s00030-012-0164-3.

[11]

M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse,, Physical Review Letters, 96 (2006). doi: 10.1103/PhysRevLett.96.104302.

[12]

B. Düring, P. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders,, Proceedings of the Royal Society A, 465 (2009), 3687. doi: 10.1098/rspa.2009.0239.

[13]

C. Escudero, F. Macià, and J.J.L. Velázquez, Two-species-coagulation approach to consensus by group level interactions,, Physical Review E, 82 (2010). doi: 10.1103/PhysRevE.82.016113.

[14]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317. doi: 10.1524/anly.2009.1029.

[15]

R. C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model,, Nonlinearity, 24 (2011), 2681. doi: 10.1088/0951-7715/24/10/002.

[16]

M. Di Francesco and S. Fagioli, Measure solutions for non-local interaction PDEs with two species,, Nonlinearity, 26 (2013), 2777. doi: 10.1088/0951-7715/26/10/2777.

[17]

J. M. Haile, Molecular Dynamics Simulation: Elementary Methods,, 1st ed., (1992).

[18]

D. Holm and V. Putkaradze, Aggregation of finite-size particles with variable mobility,, Physical Review Letters, 95 (2005). doi: 10.1103/PhysRevLett.95.226106.

[19]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, Journal of Nonlinear Science, 21 (2011), 231. doi: 10.1007/s00332-010-9082-x.

[20]

T. Kolokolnikov, Y. Huang and M. Pavlovski, Singular patterns for an aggregation model with a confining potential,, Physica D, 260 (2013), 65. doi: 10.1016/j.physd.2012.10.009.

[21]

T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions,, Physical Review E, 84 (2011). doi: 10.1103/PhysRevE.84.015203.

[22]

T. Kostić and A. L. Bertozzi, Statistical density estimation using threshold dynamics for geometric motion,, Journal of Scientific Computing, 54 (2013), 513. doi: 10.1007/s10915-012-9615-6.

[23]

H. Levine, E. Ben-Jacob, I. Cohen and W. Rappel, Swarming patterns in microorganisms: Some new modeling results,, in Decision and Control, (2006), 5073. doi: 10.1109/CDC.2006.377435.

[24]

H. Levine, W. Rappel and I. Cohen, Self-organization in systems of self-propelled particles,, Physical Review E, 63 (2000). doi: 10.1103/PhysRevE.63.017101.

[25]

Y. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system,, Physica D, 232 (2007), 33. doi: 10.1016/j.physd.2007.05.007.

[26]

Y. Chuang, Y. R. Huang, M. R. D'Orsogna and A. L. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials,, in IEEE International Conference on Robotics and Automation, (2007), 2292. doi: 10.1109/ROBOT.2007.363661.

[27]

T. Liu, Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale?,, Langmuir, 26 (2010), 9202. doi: 10.1021/la902917q.

[28]

T. Liu, M. Langston, D. Li, J. M. Pigga, C. Pichon, A. Todea and A. Müller, Self-recognition among different polyprotic macroions during assembly processes in dilute solution,, Science, 331 (2011), 1590. doi: 10.1126/science.1201121.

[29]

A. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).

[30]

A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation,, Journal of mathematical biology, 47 (2003), 353. doi: 10.1007/s00285-003-0209-7.

[31]

R. Ramírez and T. Pöschel, Coefficient of restitution of colliding viscoelastic spheres,, Physica Review E, 60 (1999). doi: 10.1103/physreve.60.4465.

[32]

R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012). doi: 10.1142/S0218202511500230.

[33]

H. Sun, D. Uminsky and A. L. Bertozzi, A generalized Birkhoff-Rott equation for two-dimensional active scalar problems,, SIAM Journal on Applied Mathematics, 72 (2012), 382. doi: 10.1137/110819883.

[34]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source,, Nonlinearity, 25 (2012), 1413. doi: 10.1088/0951-7715/25/5/1413.

[35]

C. Topaz, A. Bernoff, S. Logan and W. Toolson, A model for rolling swarms of locusts,, The European Physical Journal Special Topics, 157 (2008), 93. doi: 10.1140/epjst/e2008-00633-y.

[36]

C. Topaz, A. L. Bertozzi and M. E. Lewis, A nonlocal continuum model for biological aggregations,, Bulletin of Mathematical Biology, 68 (2006), 1601. doi: 10.1007/s11538-006-9088-6.

[37]

L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet and W. N. Reynolds, Aggregation patterns in stressed bacteria,, Physical review letters, 75 (1995), 1859. doi: 10.1103/PhysRevLett.75.1859.

[38]

J. von Brecht and D. Uminsky, On soccer balls and linearized inverse statistical mechanics,, Journal of Nonlinear Science, 22 (2012), 935. doi: 10.1007/s00332-012-9132-7.

[39]

J. von Brecht, D. Uminsky, T. Kolokolnikov and A. L. Bertozzi, Predicting pattern formation in particle interactions,, Mathematical Models and Methods in Applied Sciences, 22 (2012). doi: 10.1142/S0218202511400021.

[40]

G. Wolansky, Multi-components chemotactic system in the absence of conflicts,, European Journal of Applied Mathematics, 13 (2002), 641. doi: 10.1017/S0956792501004843.

[1]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[2]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[3]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[4]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[5]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[6]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[7]

Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030

[8]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[9]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[10]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[11]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[12]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[13]

Jiang Xu. Well-posedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1073-1092. doi: 10.3934/cpaa.2009.8.1073

[14]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[15]

Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515

[16]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[17]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[18]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[19]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[20]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (9)

[Back to Top]