2014, 19(5): 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

Paladins as predators: Invasive waves in a spatial evolutionary adversarial game

1. 

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States

Received  March 2012 Revised  August 2012 Published  April 2014

Invasive waves are numerically found in a variant of a reaction-diffusion system used to extend an evolutionary adversarial game into space wherein the influence of various strategies is allowed to diffuse. The diffusion of various strategies corresponds to peer-pressure. The invasive waves are driven by a nonlinear instability that enables an otherwise unstable state to travel through an initially uncooperative state leaving a cooperative state behind. The wave speed's dependence on the various diffusion parameters is examined in one- and two-dimensions through numerically solving the reaction-diffusion equations. Various other phenomena, such as pinning near a diffusive inhomogeneity, are also explored.
Citation: Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437
References:
[1]

G. Dee and J. S. Langer, Propagating pattern selection,, Phys. Rev. Lett., 50 (1983), 383. doi: 10.1103/PhysRevLett.50.383.

[2]

D. del Castillo-Negrete, B. Carreras and V. Lynch, Front propagation and segregation in a reaction-diffusion model with cross-diffusion,, Physica D: Nonlinear Phenomena, 168/169 (2002), 45. doi: 10.1016/S0167-2789(02)00494-3.

[3]

M. R. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental, adversarial game,, PloS one, 8 (2013).

[4]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations,, J. Math. Biol., 17 (1983), 11. doi: 10.1007/BF00276112.

[5]

S. R. Dunbar, Traveling wave solutions of diffusive lotka-volterra equations: A heteroclinic connection in r4,, Transactions of the American Mathematical Society, 286 (1984), 557. doi: 10.2307/1999810.

[6]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Human Genetics, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[7]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, Journal of Mathematical Biology, 2 (1975), 251. doi: 10.1007/BF00277154.

[8]

M. Holzer and A. Scheel, A slow pushed front in a Lotka-Volterra competition model,, Nonlinearity, 25 (2012), 2151. doi: 10.1088/0951-7715/25/7/2151.

[9]

X. Hou, Y. Li and K. R. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities,, Discrete Contin. Dyn. Syst., 26 (2010), 265. doi: 10.3934/dcds.2010.26.265.

[10]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique,, Mosc. Univ. Bull. Math., 1 (1937), 1.

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018.

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8.

[14]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219. doi: 10.1007/s002850200144.

[15]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008.

[16]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, Journal of Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157.

[17]

S. McCalla, 2D invasion movie,, , (2012).

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,, Comm. Pure Appl. Math., 28 (1975), 323. doi: 10.1002/cpa.3160280302.

[19]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskiĭ -Piskonov,, Comm. Pure Appl. Math., 28 (1975), 323. doi: 10.1002/cpa.3160280302.

[20]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, Journal of Mathematical Biology, 9 (1980), 49. doi: 10.1007/BF00276035.

[21]

J. A. Sherratt, M. A. Lewis and A. C. Fowler, Ecological chaos in the wake of invasion,, Proceedings of the National Academy of Sciences, 92 (1995), 2524. doi: 10.1073/pnas.92.7.2524.

[22]

J. A. Sherratt, On the evolution of periodic plane waves in reaction-diffusion systems of $\lambda $-$\omega$ type,, SIAM Journal on Applied Mathematics, 54 (1994), 1374. doi: 10.1137/S0036139993243746.

[23]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, Journal of Theoretical Biology, 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[24]

M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society,, Phys. Rev. E, 82 (2010). doi: 10.1103/PhysRevE.82.066114.

[25]

G. Szabó and G. Fáth, Evolutionary games on graphs,, Physics Reports, 446 (2007), 97. doi: 10.1016/j.physrep.2007.04.004.

[26]

G. Szabó and C. Hauert, Phase transitions and volunteering in spatial public goods games,, Phys. Rev. Lett., 89 (2002). doi: 10.1103/PhysRevLett.89.118101.

[27]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.

[28]

X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak propagation,, Discrete Contin. Dyn. Syst., 32 (2012), 3303. doi: 10.3934/dcds.2012.32.3303.

[29]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028.

[30]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183. doi: 10.1007/s002850200145.

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

show all references

References:
[1]

G. Dee and J. S. Langer, Propagating pattern selection,, Phys. Rev. Lett., 50 (1983), 383. doi: 10.1103/PhysRevLett.50.383.

[2]

D. del Castillo-Negrete, B. Carreras and V. Lynch, Front propagation and segregation in a reaction-diffusion model with cross-diffusion,, Physica D: Nonlinear Phenomena, 168/169 (2002), 45. doi: 10.1016/S0167-2789(02)00494-3.

[3]

M. R. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental, adversarial game,, PloS one, 8 (2013).

[4]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations,, J. Math. Biol., 17 (1983), 11. doi: 10.1007/BF00276112.

[5]

S. R. Dunbar, Traveling wave solutions of diffusive lotka-volterra equations: A heteroclinic connection in r4,, Transactions of the American Mathematical Society, 286 (1984), 557. doi: 10.2307/1999810.

[6]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Human Genetics, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[7]

K. P. Hadeler and F. Rothe, Travelling fronts in nonlinear diffusion equations,, Journal of Mathematical Biology, 2 (1975), 251. doi: 10.1007/BF00277154.

[8]

M. Holzer and A. Scheel, A slow pushed front in a Lotka-Volterra competition model,, Nonlinearity, 25 (2012), 2151. doi: 10.1088/0951-7715/25/7/2151.

[9]

X. Hou, Y. Li and K. R. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities,, Discrete Contin. Dyn. Syst., 26 (2010), 265. doi: 10.3934/dcds.2010.26.265.

[10]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique,, Mosc. Univ. Bull. Math., 1 (1937), 1.

[11]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619. doi: 10.1016/j.crma.2006.09.019.

[12]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679. doi: 10.1016/j.crma.2006.09.018.

[13]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229. doi: 10.1007/s11537-007-0657-8.

[14]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219. doi: 10.1007/s002850200144.

[15]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008.

[16]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, Journal of Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157.

[17]

S. McCalla, 2D invasion movie,, , (2012).

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,, Comm. Pure Appl. Math., 28 (1975), 323. doi: 10.1002/cpa.3160280302.

[19]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskiĭ -Piskonov,, Comm. Pure Appl. Math., 28 (1975), 323. doi: 10.1002/cpa.3160280302.

[20]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, Journal of Mathematical Biology, 9 (1980), 49. doi: 10.1007/BF00276035.

[21]

J. A. Sherratt, M. A. Lewis and A. C. Fowler, Ecological chaos in the wake of invasion,, Proceedings of the National Academy of Sciences, 92 (1995), 2524. doi: 10.1073/pnas.92.7.2524.

[22]

J. A. Sherratt, On the evolution of periodic plane waves in reaction-diffusion systems of $\lambda $-$\omega$ type,, SIAM Journal on Applied Mathematics, 54 (1994), 1374. doi: 10.1137/S0036139993243746.

[23]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, Journal of Theoretical Biology, 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[24]

M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society,, Phys. Rev. E, 82 (2010). doi: 10.1103/PhysRevE.82.066114.

[25]

G. Szabó and G. Fáth, Evolutionary games on graphs,, Physics Reports, 446 (2007), 97. doi: 10.1016/j.physrep.2007.04.004.

[26]

G. Szabó and C. Hauert, Phase transitions and volunteering in spatial public goods games,, Phys. Rev. Lett., 89 (2002). doi: 10.1103/PhysRevLett.89.118101.

[27]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.

[28]

X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak propagation,, Discrete Contin. Dyn. Syst., 32 (2012), 3303. doi: 10.3934/dcds.2012.32.3303.

[29]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028.

[30]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183. doi: 10.1007/s002850200145.

[31]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[1]

Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200

[2]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[3]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[4]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[5]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[6]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[7]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[8]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[9]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[10]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[11]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[12]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[13]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[14]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[15]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[16]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[17]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[18]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[19]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[20]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]