\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cops on the dots in a mathematical model of urban crime and police response

Abstract / Introduction Related Papers Cited by
  • Hotspots of crime localized in space and time are well documented. Previous mathematical models of urban crime have exhibited these hotspots but considered a static or otherwise suboptimal police response to them. We introduce a program of police response to hotspots of crime in which the police adapt dynamically to changing crime patterns. In particular, they choose their deployment to solve an optimal control problem at every time. This gives rise to a free boundary problem for the police deployment's spatial support. We present an efficient algorithm for solving this problem numerically and show that police presence can prompt surprising interactions among adjacent hotspots.
    Mathematics Subject Classification: Primary: 35K57, 49M29, 65K10; Secondary: 65M06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Berestycki and J.-P. Nadal, Self-organised critical hot spots of criminal activity, Eur. J. Appl. Math., 21 (2010), 371-399.doi: 10.1017/S0956792510000185.

    [2]

    H. Berestycki, N. Rodríguez and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11 (2013), 1097-1126.arXiv:1302.4333doi: 10.1137/12089884X.

    [3]

    D. Birks, M. Townsley and A. Stewart, Generative explanations of crime: Using simulation to test criminological theory, Criminology, 50 (2012), 221-254.doi: 10.1111/j.1745-9125.2011.00258.x.

    [4]

    A. A. Braga, The effects of hot spots policing on crime, Ann. Am. Acad. Polit. S. S., 578 (2001), 104-125.

    [5]

    P. J. Brantingham and P. L. Brantingham, Patterns in Crime, Macmillan, 1984.

    [6]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102.

    [7]

    R. S. Cantrell, C. Cosner and R. Manásevich, Global bifurcation of solutions for crime modeling equations, SIAM J. Math. Anal., 44 (2012), 1340-1358.doi: 10.1137/110843356.

    [8]

    S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov and S. G. McCalla., Crime modeling with Lévy flights, SIAM J. Appl. Math., 73 (2013), 1703-1720.doi: 10.1137/120895408.

    [9]

    J. E. Eck and D. Weisburd, Crime places in crime theory, in Crime and Place: Crime Prevention Studies (eds. John E. Eck and David Weisburd), Criminal Justice Press, (1995), 1-33.

    [10]

    T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [11]

    S. D. Johnson, K. Bowers and A. Hirschfield, New insights into the spatial and temporal distribution of repeat victimization, British J. Criminol, 37 (1997), 224-241.doi: 10.1093/oxfordjournals.bjc.a014156.

    [12]

    Paul A. Jones, P. J. Brantingham and L. R. Chayes, Statistical models of criminal behavior: The effects of law enforcement actions, Math. Mod. Meth. Appl. S., 20 (2010), 1397-1423.doi: 10.1142/S0218202510004647.

    [13]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [14]

    E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.doi: 10.1016/0022-5193(71)90050-6.

    [15]

    T. Kolokolnikov, M. J. Ward and J. Wei, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, to appear in Discrete Cont. Dyn.-B, arXiv:1201.3090.

    [16]

    A. B. Pitcher, Adding police to a mathematical model of burglary, Eur. J. Appl. Math., 21 (2010), 401-419.doi: 10.1017/S0956792510000112.

    [17]

    N. Rodríguez, On the global well-posedness theory for a class of {PDE} models for criminal activity, Physica D, 260 (2013), 191-200.doi: 10.1016/j.physd.2012.08.003.

    [18]

    N. Rodríguez and A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Mod. Meth. Appl. S., 20 (2010), 1425-1457.doi: 10.1142/S0218202510004696.

    [19]

    M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Mod. Meth. Appl. S., 18 (2008), 1249-1267.doi: 10.1142/S0218202508003029.

    [20]

    M. B. Short, A. L. Bertozzi and P. J. Brantingham, Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9 (2010), 462-483.doi: 10.1137/090759069.

    [21]

    M. B. Short, P. J. Brantingham, A. L. Bertozzi and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, P. Natl. Acad. Sci. USA, 107 (2010), 3961-3965.doi: 10.1073/pnas.0910921107.

    [22]

    H. Sun, Continuum Equations for Crime Modeling with Random Process, unpublished report, UCLA, 2010.

    [23]

    M. Townsley, S. D. Johnson and J. H. Ratcliffe, Space time dynamics of insurgent activity in Iraq, Security J., 21 (2008), 139-146.doi: 10.1057/palgrave.sj.8350090.

    [24]

    Y. Yao and A. L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Physica D, 260 (2013), 77-89.doi: 10.1016/j.physd.2013.01.009.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(496) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return