Citation: |
[1] |
G. Amendola, The minimum free energy for incompressible viscoelastic fluids, Math. Methods Appl. Sci., 29 (2006), 2201-2223.doi: 10.1002/mma.769. |
[2] |
G. Amendola and S. Carillo, Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (2004), 429-446.doi: 10.1093/qjmam/57.3.429. |
[3] |
G. Amendola and M. Fabrizio, Maximum recoverable work for incompressible viscoelastic fluids and application to a discrete spectrum model, Diff. Int. Eq., 20 (2007), 445-466. |
[4] |
G. Amendola, M. Fabrizio, J. M. Golden and B. Lazzari, Free energies and asymptotic behaviour for incompressible viscoelastic fluids, Appl. Anal., 88 (2009), 789-805.doi: 10.1080/00036810903042117. |
[5] |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory, Springer, New York, 2012.doi: 10.1007/978-1-4614-1692-0. |
[6] |
S. Breuer and E. T. Onat, On the determination of free energy in viscoelastic solids, Z. angew. Math. Phys., 15 (1964), 184-191.doi: 10.1007/BF01602660. |
[7] |
S. Breuer and E. T. Onat, On recoverable work in viscoelasticity, Z. Angew. Math. Phys., 15 (1981), 13-21. |
[8] |
S. Carillo, Existence, Uniqueness and Exponential Decay: An Evolution Problem in Heat Conduction with Memory, Quarterly of Appl. Math., 69 (2011), 635-649. S 0033-569X(2011)01223-1, Article Electronically published on July 7, (2011).doi: 10.1090/S0033-569X-2011-01223-1. |
[9] |
S. Carillo, An evolution problem in materials with fading memory: solution's existence and uniqueness, Complex Variables and Elliptic Equations An International Journal, 56 (2011), 481-492.doi: 10.1080/17476931003786667. |
[10] |
S. Carillo, Materials with Memory: Free energies & solutions' exponential decay, Communications on Pure And Applied Analysis, 9 (2010), 1235-1248.doi: 10.3934/cpaa.2010.9.1235. |
[11] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308. |
[12] |
W. A. Day, Some results on the least work needed to produce a given strain in a given time in a viscoelastic material and a uniqueness theorem for dynamic viscoelasticity, Quart. J. Mech. Appl. Math., 23 (1970), 469-479.doi: 10.1093/qjmam/23.4.469. |
[13] |
G. Del Piero and L. Deseri, On the analytic expression of the free energy in linear viscoelasticity, J. Elasticity, 43 (1996), 247-278.doi: 10.1007/BF00042503. |
[14] |
L. Deseri, G. Gentili and J. M. Golden, An explicit formula for the minimum free energy in linear viscoelasticity, J. Elasticity, 54 (1999), 141-185.doi: 10.1023/A:1007646017347. |
[15] |
L. Deseri, M. Fabrizio and J. M. Golden, The concept of minimal state in viscoelasticity: New free energies and applications to PDEs, Arch. Rational Mech. Anal., 181 (2006), 43-96.doi: 10.1007/s00205-005-0406-1. |
[16] |
M. Fabrizio, G. Gentili and J. M. Golden, The minimum free energy for a class of compressible viscoelastic fluids, Advances Diff. Eq., 7 (2002), 319-342. |
[17] |
M. Fabrizio, C. Giorgi and A. Morro, Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal., 125 (1994), 341-373.doi: 10.1007/BF00375062. |
[18] |
M. Fabrizio and J. M. Golden, Maximum and minimum free energies for a linear viscoelastic material, Quart. Appl. Math., 60 (2002), 341-381. |
[19] |
M. Fabrizio and B. Lazzari, On asymptotic stability for linear viscoelastic fluids, Diff. Int. Eq., 6 (1993), 491-505. |
[20] |
M. Fabrizio and A. Morro, Reversible processes in thermodynamics of continuous media, J. Nonequil. Thermodyn., 16 (1991), 1-12.doi: 10.1515/jnet.1991.16.1.1. |
[21] |
M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992.doi: 10.1137/1.9781611970807. |
[22] |
G. Gentili, Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, Quart. Appl. Math., 60 (2002), 153-182. |
[23] |
J. M. Golden, Free energy in the frequency domain: The scalar case, Quart. Appl. Math., 58 (2000), 127-150. |
[24] |
D. Graffi and M. Fabrizio, On the notion of state for viscoelastic materials of "rate'' type, Atti. Accad. Naz. Lincei, 83 (1990), 201-208. |
[25] |
D. Graffi and M. Fabrizio, Nonuniqueness of free energy for viscoelastic materials, Atti Accad. Naz. Lincei, 83 (1990), 209-214. |
[26] |
W. Noll, A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1-50. |
[27] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[28] |
M. Slemrod, A hereditary partial differential equation with applications in the theory of simple fluids, Arch. Rational Mech. Anal., 62 (1976), 303-321. |