September  2014, 19(7): 2111-2132. doi: 10.3934/dcdsb.2014.19.2111

Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models

1. 

Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy, Italy, Italy

Received  April 2013 Revised  July 2013 Published  August 2014

In this paper we have proved exponential asymptotic stability for the corotational incompressible diffusive Johnson-Segalman viscolelastic model and a simple decay result for the corotational incompressible hyperbolic Maxwell model. Moreover we have established continuous dependence and uniqueness results for the non-zero equilibrium solution.
    In the compressible case, we have proved a Hölder continuous dependence theorem upon the initial data and body force for both models, whence follows a result of continuous dependence on the initial data and, therefore, uniqueness.
    For the Johnson-Segalman model we have also dealt with the case of negative elastic viscosities, corresponding to retardation effects. A comparison with other type of viscoelasticity, showing short memory elastic effects, is given.
Citation: Franca Franchi, Barbara Lazzari, Roberta Nibbi. Uniqueness and stability results for non-linear Johnson-Segalman viscoelasticity and related models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2111-2132. doi: 10.3934/dcdsb.2014.19.2111
References:
[1]

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids,, Vol 1. Fluid Mechanics, (1987). Google Scholar

[2]

T. Bodnár and L. Pirkl, A Remark on the Deviatoric Decomposition of Oldroyd Type Models,, Colloquium FLUID DYNAMICS 2011, (2011). Google Scholar

[3]

R. M. Christensen, Theory of Viscoelasticity,, $2^{nd}$ edition, (2010). doi: 10.1115/1.3408900. Google Scholar

[4]

C. I. Christov, Frame indifferent formulation of Maxwell's elastic-fluid model and the rational continuum mechanics of the electromagnetic field,, Mech. Res. Comm., 38 (2011), 334. doi: 10.1016/j.mechrescom.2011.03.002. Google Scholar

[5]

M. Fabrizio, Dario graffi in a complex historical period,, in Mathematicians in Bologna 1861-1960, (2012), 1861. doi: 10.1007/978-3-0348-0227-7_7. Google Scholar

[6]

M. Fabrizio and F. Franchi, Delayed thermal models. Stability and thermodynamics,, J. Thermal Stresses, 37 (2014), 160. doi: 10.1080/01495739.2013.839619. Google Scholar

[7]

F. Franchi, On the behaviour of one-dimensional waves in thermo-viscoelastic fluids,, Meccanica, 17 (1982), 3. doi: 10.1007/BF02156001. Google Scholar

[8]

R. J. Gordon and W. R. Schowalter, Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions,, Trans. Soc. Rheo., 16 (1972), 79. doi: 10.1122/1.549256. Google Scholar

[9]

D. Graffi, On a method for proving uniqueness theorems in mathematical physics,, Atti. Sem. Mat. Fis. Univ. Modena, 37 (1989), 259. Google Scholar

[10]

A. Guaily and M. Epstein, A unified hyperbolic model for viscoelastic liquids,, Mech. Res. Comm., 37 (2010), 158. doi: 10.1016/j.mechrescom.2009.12.004. Google Scholar

[11]

T. Gültop, B. Alyavuz and M. Kopaç, Propagation of acceleration waves in the viscoelastic Johnson-Segalman fluids,, Mech. Res. Comm., 37 (2010), 153. Google Scholar

[12]

S. J. Haward, Buckling instabilities in dilute polymer solution elastic strands,, Rheol. Acta., 49 (2010), 1219. doi: 10.1007/s00397-010-0467-4. Google Scholar

[13]

T. Hayat, A. Afsar and N. Ali, Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel,, Math. Comput. Modelling, 47 (2008), 380. doi: 10.1016/j.mcm.2007.04.012. Google Scholar

[14]

T. Hayat, S. Hina and A. A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer,, J. Mech. Med. Biol., 12 (2012). doi: 10.1142/S0219519412004375. Google Scholar

[15]

S. Hinaa, T. Hayat and S. Asghard, Peristaltic transport of Johnson-Segalman fluid in a curved channel with compliant walls,, Nonlinear Anal. Model. Control, 17 (2012), 297. Google Scholar

[16]

D. Hu and T. Leliévre, New entropy estimates for the Oldroyd-B model and related models,, Commun. Math. Sci., 5 (2007), 909. doi: 10.4310/CMS.2007.v5.n4.a9. Google Scholar

[17]

M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows nonaffine deformation,, J. Non-Newtionan Fluid Mech., 4 (1977), 255. Google Scholar

[18]

D. D. Joseph, M. Renardy and J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids,, Arch. Rat. Mech. Anal., 87 (1985), 213. doi: 10.1007/BF00250725. Google Scholar

[19]

R. W. Kolkka, D. S. Malkus, M. G. Hansen and G. R. Ierley, Spurt phenomena of the Johnson-Segalman fluid and related models,, J. Non-Newtonian Fluid Mech., 29 (1988), 303. doi: 10.1016/0377-0257(88)85059-6. Google Scholar

[20]

H. V. J. Le Meur, Well-posedness of surface wave equations above a viscoelastic fluid,, J. Math. Fluid Mech., 13 (2011), 481. doi: 10.1007/s00021-010-0029-7. Google Scholar

[21]

V. Y. Liapidevskii, V. V. Pukhnachev and A. Tani, Nonlinear waves in incompressible viscoelastic Maxwell medium,, Wave Motion, 48 (2011), 727. doi: 10.1016/j.wavemoti.2011.04.002. Google Scholar

[22]

A. Morro, Evolution equations for non-simple viscoelastic solids,, J. Elasticity, 105 (2011), 93. doi: 10.1007/s10659-010-9292-3. Google Scholar

[23]

C. J. Pipe, N. J. Kim, P. A. Vasquez, L. P. Cook and G. H. McKinley, Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions,, Journal of Rheology, 54 (2010), 881. doi: 10.1122/1.3439729. Google Scholar

[24]

L. E. Payne and B. Straughan, Convergence of the equations for a maxwell fluid,, Stud. Appl. Math., 103 (1999), 267. Google Scholar

[25]

M. Renardy, Similarity solutions for jet breakup for various models of viscoelastic fluids,, J. Non-Newtonian Fluid Mech., 104 (2002), 65. doi: 10.1016/S0377-0257(02)00016-2. Google Scholar

[26]

M. Renardy, On control of shear flow of an upper convected Maxwell fluid,, ZAMM Z. Angew. Math. Mech., 87 (2007), 213. doi: 10.1002/zamm.200610313. Google Scholar

[27]

C. E. Seyler and M. R. Martin, Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches,, Phys. Plasmas, 18 (2011). doi: 10.1063/1.3543799. Google Scholar

[28]

B. Straughan, The Energy Method, Stability and Nonlinear Convection,, $2^{nd}$ edition, (2004). doi: 10.1007/978-0-387-21740-6. Google Scholar

[29]

B. Straughan, Heat Waves,, Applied Mathematical Sciences 177, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar

[30]

D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior,, Taylor and Francis, (1997). Google Scholar

[31]

L. Wilson, H. Zhou, W. Kang and H. Wang, Controllability of non-newtonian fluids under homogeneous extensional flow,, Appl. Math. Sci., 2 (2008), 2145. Google Scholar

show all references

References:
[1]

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids,, Vol 1. Fluid Mechanics, (1987). Google Scholar

[2]

T. Bodnár and L. Pirkl, A Remark on the Deviatoric Decomposition of Oldroyd Type Models,, Colloquium FLUID DYNAMICS 2011, (2011). Google Scholar

[3]

R. M. Christensen, Theory of Viscoelasticity,, $2^{nd}$ edition, (2010). doi: 10.1115/1.3408900. Google Scholar

[4]

C. I. Christov, Frame indifferent formulation of Maxwell's elastic-fluid model and the rational continuum mechanics of the electromagnetic field,, Mech. Res. Comm., 38 (2011), 334. doi: 10.1016/j.mechrescom.2011.03.002. Google Scholar

[5]

M. Fabrizio, Dario graffi in a complex historical period,, in Mathematicians in Bologna 1861-1960, (2012), 1861. doi: 10.1007/978-3-0348-0227-7_7. Google Scholar

[6]

M. Fabrizio and F. Franchi, Delayed thermal models. Stability and thermodynamics,, J. Thermal Stresses, 37 (2014), 160. doi: 10.1080/01495739.2013.839619. Google Scholar

[7]

F. Franchi, On the behaviour of one-dimensional waves in thermo-viscoelastic fluids,, Meccanica, 17 (1982), 3. doi: 10.1007/BF02156001. Google Scholar

[8]

R. J. Gordon and W. R. Schowalter, Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions,, Trans. Soc. Rheo., 16 (1972), 79. doi: 10.1122/1.549256. Google Scholar

[9]

D. Graffi, On a method for proving uniqueness theorems in mathematical physics,, Atti. Sem. Mat. Fis. Univ. Modena, 37 (1989), 259. Google Scholar

[10]

A. Guaily and M. Epstein, A unified hyperbolic model for viscoelastic liquids,, Mech. Res. Comm., 37 (2010), 158. doi: 10.1016/j.mechrescom.2009.12.004. Google Scholar

[11]

T. Gültop, B. Alyavuz and M. Kopaç, Propagation of acceleration waves in the viscoelastic Johnson-Segalman fluids,, Mech. Res. Comm., 37 (2010), 153. Google Scholar

[12]

S. J. Haward, Buckling instabilities in dilute polymer solution elastic strands,, Rheol. Acta., 49 (2010), 1219. doi: 10.1007/s00397-010-0467-4. Google Scholar

[13]

T. Hayat, A. Afsar and N. Ali, Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel,, Math. Comput. Modelling, 47 (2008), 380. doi: 10.1016/j.mcm.2007.04.012. Google Scholar

[14]

T. Hayat, S. Hina and A. A. Hendi, Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer,, J. Mech. Med. Biol., 12 (2012). doi: 10.1142/S0219519412004375. Google Scholar

[15]

S. Hinaa, T. Hayat and S. Asghard, Peristaltic transport of Johnson-Segalman fluid in a curved channel with compliant walls,, Nonlinear Anal. Model. Control, 17 (2012), 297. Google Scholar

[16]

D. Hu and T. Leliévre, New entropy estimates for the Oldroyd-B model and related models,, Commun. Math. Sci., 5 (2007), 909. doi: 10.4310/CMS.2007.v5.n4.a9. Google Scholar

[17]

M. W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows nonaffine deformation,, J. Non-Newtionan Fluid Mech., 4 (1977), 255. Google Scholar

[18]

D. D. Joseph, M. Renardy and J. C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids,, Arch. Rat. Mech. Anal., 87 (1985), 213. doi: 10.1007/BF00250725. Google Scholar

[19]

R. W. Kolkka, D. S. Malkus, M. G. Hansen and G. R. Ierley, Spurt phenomena of the Johnson-Segalman fluid and related models,, J. Non-Newtonian Fluid Mech., 29 (1988), 303. doi: 10.1016/0377-0257(88)85059-6. Google Scholar

[20]

H. V. J. Le Meur, Well-posedness of surface wave equations above a viscoelastic fluid,, J. Math. Fluid Mech., 13 (2011), 481. doi: 10.1007/s00021-010-0029-7. Google Scholar

[21]

V. Y. Liapidevskii, V. V. Pukhnachev and A. Tani, Nonlinear waves in incompressible viscoelastic Maxwell medium,, Wave Motion, 48 (2011), 727. doi: 10.1016/j.wavemoti.2011.04.002. Google Scholar

[22]

A. Morro, Evolution equations for non-simple viscoelastic solids,, J. Elasticity, 105 (2011), 93. doi: 10.1007/s10659-010-9292-3. Google Scholar

[23]

C. J. Pipe, N. J. Kim, P. A. Vasquez, L. P. Cook and G. H. McKinley, Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions,, Journal of Rheology, 54 (2010), 881. doi: 10.1122/1.3439729. Google Scholar

[24]

L. E. Payne and B. Straughan, Convergence of the equations for a maxwell fluid,, Stud. Appl. Math., 103 (1999), 267. Google Scholar

[25]

M. Renardy, Similarity solutions for jet breakup for various models of viscoelastic fluids,, J. Non-Newtonian Fluid Mech., 104 (2002), 65. doi: 10.1016/S0377-0257(02)00016-2. Google Scholar

[26]

M. Renardy, On control of shear flow of an upper convected Maxwell fluid,, ZAMM Z. Angew. Math. Mech., 87 (2007), 213. doi: 10.1002/zamm.200610313. Google Scholar

[27]

C. E. Seyler and M. R. Martin, Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches,, Phys. Plasmas, 18 (2011). doi: 10.1063/1.3543799. Google Scholar

[28]

B. Straughan, The Energy Method, Stability and Nonlinear Convection,, $2^{nd}$ edition, (2004). doi: 10.1007/978-0-387-21740-6. Google Scholar

[29]

B. Straughan, Heat Waves,, Applied Mathematical Sciences 177, (2011). doi: 10.1007/978-1-4614-0493-4. Google Scholar

[30]

D. Y. Tzou, Macro-to-Microscale Heat Transfer: The Lagging Behavior,, Taylor and Francis, (1997). Google Scholar

[31]

L. Wilson, H. Zhou, W. Kang and H. Wang, Controllability of non-newtonian fluids under homogeneous extensional flow,, Appl. Math. Sci., 2 (2008), 2145. Google Scholar

[1]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[2]

Paola Goatin, Philippe G. LeFloch. $L^1$ continuous dependence for the Euler equations of compressible fluids dynamics. Communications on Pure & Applied Analysis, 2003, 2 (1) : 107-137. doi: 10.3934/cpaa.2003.2.107

[3]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[4]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[5]

Xiao-Dong Yang, Roderick V. N. Melnik. Accounting for the effect of internal viscosity in dumbbell models for polymeric fluids and relaxation of DNA. Conference Publications, 2007, 2007 (Special) : 1052-1060. doi: 10.3934/proc.2007.2007.1052

[6]

Van-Sang Ngo, Stefano Scrobogna. Dispersive effects of weakly compressible and fast rotating inviscid fluids. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 749-789. doi: 10.3934/dcds.2018033

[7]

Zaynab Salloum. Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 625-642. doi: 10.3934/cpaa.2010.9.625

[8]

Colette Guillopé, Abdelilah Hakim, Raafat Talhouk. Existence of steady flows of slightly compressible viscoelastic fluids of White-Metzner type around an obstacle. Communications on Pure & Applied Analysis, 2005, 4 (1) : 23-43. doi: 10.3934/cpaa.2005.4.23

[9]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[10]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[11]

Paolo Secchi. An alpha model for compressible fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[12]

Peter Constantin. Transport in rotating fluids. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 165-176. doi: 10.3934/dcds.2004.10.165

[13]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[14]

D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 47-82. doi: 10.3934/dcds.2004.11.47

[15]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020007

[16]

Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic & Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373

[17]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

[18]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[19]

M. Berezhnyi, L. Berlyand, Evgen Khruslov. The homogenized model of small oscillations of complex fluids. Networks & Heterogeneous Media, 2008, 3 (4) : 831-862. doi: 10.3934/nhm.2008.3.831

[20]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]