\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An explicit coefficient criterion for the existence of positive solutions to the linear advanced equation

Abstract / Introduction Related Papers Cited by
  • The paper is devoted to the investigation of a linear differential equation with advanced argument $\dot y(t)=c(t)y(t+\tau),$ where $\tau>0$, and the function $c\colon [t_0,\infty)\to (0,\infty)$, $t_0\in \mathbb{R}$ is bounded and locally Lipschitz continuous. New explicit coefficient criterion for the existence of a positive solution in terms of $c$ and $\tau$ is derived.
    Mathematics Subject Classification: 34K15, 34K25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. P. Agarwal, L. Berezansky, E. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, 2012.doi: 10.1007/978-1-4614-3455-9.

    [2]

    R. P. Agarwal, M. Bohner and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, Inc., 2004.doi: 10.1201/9780203025741.

    [3]

    H. Bereketoǧlu, F. Karakoç and G. Seyhan, Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument, Acta Appl. Math., 110 (2010), 499-510.doi: 10.1007/s10440-009-9458-9.

    [4]

    J. Diblík, A note on explicit criteria for the existence of positive solutions to the linear advanced equation $\dot x(t) = c(t)x(t + \tau)$, Appl. Math. Lett., 35 (2014), 72-76.doi: 10.1016/j.aml.2013.11.010.

    [5]

    J. Diblík and N. Koksch, Positive solutions of the equation $\dotx(t)=-c(t)x(t-\tau )$ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659.doi: 10.1006/jmaa.2000.7008.

    [6]

    J. Diblík and M. Kúdelčíková, Positive solutions of advanced differential systems, The Scientific World Journal, 2013 (2013), Article ID 613832, 1-7.doi: 10.1155/2013/613832.

    [7]

    A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order differential equations with delay, J. Math. Anal. Appl., 206 (1997), 254-269.doi: 10.1006/jmaa.1997.5231.

    [8]

    Y. Domshlak and I. P. Stavroulakis, Oscillation of first-order delay differential equations in a critical case, Appl. Anal., 61 (1996), 359-371.doi: 10.1080/00036819608840464.

    [9]

    B. Dorociaková, M. Kubjatková and R. Olach, Existence of positive solutions of neutral differential equations, Abstr. Appl. Anal., 2012 (2012), Art. ID 307968, 14 pp.doi: 10.1155/2012/307968.

    [10]

    Á. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503-1510.doi: 10.1090/S0002-9939-1995-1242082-1.

    [11]

    L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, Basel, Hong Kong, 1994.

    [12]

    I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, 1991.

    [13]

    V. E. Sljusarchuk, The necessary and sufficient conditions for oscillation of solutions of nonlinear differential equations with pulse influence in the Banach space, Ukrain. Mat. Zh., 51 (1999), 98-109.doi: 10.1007/BF02591918.

    [14]

    B. G. Zhang, Oscillation of the solutions of the first-order advanced type differential equations, (Chinese summary), Sci. Exploration, 2 (1982), 79-82.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return