2014, 19(8): 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points

1. 

Department of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

In the paper we consider a Dirichlet problem for a fractional differential equation. The main goal is to prove an existence and continuous dependence of solution on functional parameter $u$ for the above problem. To prove it we use a variational method.
Citation: Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557
References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhäuser, (1990).

[2]

D. Bors, A. Skowron and S. Walczak, Optimal control and stability of elliptic systems with integral cost functional,, Systems Science, 33 (2007), 13.

[3]

D. Bors and S. Walczak, Nonlinear elliptic systems with variable boundary data,, Nonlinear Analysis: Theory, 52 (2003), 1347. doi: 10.1016/S0362-546X(02)00179-7.

[4]

L. Bourdin, Existence of a weak solution for fractional Euler-Lagrange equations,, Journal of Mathematical Analysis and Applications, 399 (2013), 239. doi: 10.1016/j.jmaa.2012.10.008.

[5]

L. Debnath, Recent applications of fractional calculus to science and engineering,, International Journal of Mathematics and Mathematical Sciences, 54 (2003), 3413. doi: 10.1155/S0161171203301486.

[6]

D. Idczak, Fractional du Bois-Reymond Lemma of Order $\alpha\in(1/2,1)$,, Proceedings of the 7th International Workshop on Multidimensional (nD) Systems (nDs), (2011).

[7]

R. Kamocki and M. Majewski, On a fractional Dirichlet problem,, Proceedings of 17th International Conference Methods and Models in Automation and Robotics (MMAR), (2012), 60. doi: 10.1109/MMAR.2012.6347911.

[8]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, Elsevier, (2006).

[9]

L. Nirenberg, Topics in Nonlinear Functional Analysis,, New York University - Courant Institute of Mathematical Sciences - AMS, (1974).

[10]

I. Podlubny, Fractional Differential Equations,, Mathematics in Science and Engineering, (1999).

[11]

S. Walczak, On the continuous dependance on parameters of solutions of the Dirichlet problem: Part I. Coercive case; Part II. The case of saddle points,, Bulletin de la Classe des Sciences de l'Académie Royale de Beligique, 6 (1995), 247.

show all references

References:
[1]

J. P. Aubin and H. Frankowska, Set-Valued Analysis,, Birkhäuser, (1990).

[2]

D. Bors, A. Skowron and S. Walczak, Optimal control and stability of elliptic systems with integral cost functional,, Systems Science, 33 (2007), 13.

[3]

D. Bors and S. Walczak, Nonlinear elliptic systems with variable boundary data,, Nonlinear Analysis: Theory, 52 (2003), 1347. doi: 10.1016/S0362-546X(02)00179-7.

[4]

L. Bourdin, Existence of a weak solution for fractional Euler-Lagrange equations,, Journal of Mathematical Analysis and Applications, 399 (2013), 239. doi: 10.1016/j.jmaa.2012.10.008.

[5]

L. Debnath, Recent applications of fractional calculus to science and engineering,, International Journal of Mathematics and Mathematical Sciences, 54 (2003), 3413. doi: 10.1155/S0161171203301486.

[6]

D. Idczak, Fractional du Bois-Reymond Lemma of Order $\alpha\in(1/2,1)$,, Proceedings of the 7th International Workshop on Multidimensional (nD) Systems (nDs), (2011).

[7]

R. Kamocki and M. Majewski, On a fractional Dirichlet problem,, Proceedings of 17th International Conference Methods and Models in Automation and Robotics (MMAR), (2012), 60. doi: 10.1109/MMAR.2012.6347911.

[8]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, Elsevier, (2006).

[9]

L. Nirenberg, Topics in Nonlinear Functional Analysis,, New York University - Courant Institute of Mathematical Sciences - AMS, (1974).

[10]

I. Podlubny, Fractional Differential Equations,, Mathematics in Science and Engineering, (1999).

[11]

S. Walczak, On the continuous dependance on parameters of solutions of the Dirichlet problem: Part I. Coercive case; Part II. The case of saddle points,, Bulletin de la Classe des Sciences de l'Académie Royale de Beligique, 6 (1995), 247.

[1]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[2]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[3]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[4]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[5]

Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277

[6]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[7]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[8]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[9]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[10]

Qian Liu, Xinmin Yang, Heung Wing Joseph Lee. On saddle points of a class of augmented lagrangian functions. Journal of Industrial & Management Optimization, 2007, 3 (4) : 693-700. doi: 10.3934/jimo.2007.3.693

[11]

Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008

[12]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[13]

Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469

[14]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[15]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

[16]

Alberto Bressan, Fang Yu. Continuous Riemann solvers for traffic flow at a junction. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4149-4171. doi: 10.3934/dcds.2015.35.4149

[17]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[18]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[19]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[20]

Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]