• Previous Article
    Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints
  • DCDS-B Home
  • This Issue
  • Next Article
    Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences
2014, 19(8): 2681-2690. doi: 10.3934/dcdsb.2014.19.2681

On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type

1. 

University of Bialystok, ul. Akademicka 2, 15-267 Białystok

2. 

Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland, Poland

Received  November 2013 Revised  May 2014 Published  August 2014

A Volterra difference equation of the form $$x(n+2)=a(n)+b(n)x(n+1)+c(n)x(n)+\sum\limits^{n+1}_{i=1}K(n,i)x(i)$$ where $a, b, c, x \colon\mathbb{N} \to\mathbb{R}$ and $K \colon \mathbb{N}\times\mathbb{N}\to \mathbb{R}$ is studied. For every admissible constant $C \in \mathbb{R}$, sufficient conditions for the existence of a solution $x \colon\mathbb{N} \to\mathbb{R}$ of the above equation such that \[ x(n)\sim C \, n \, \beta(n), \] where $\beta(n)= \frac{1}{2^n}\prod\limits_{j=1}^{n-1}b(j)$, are presented. As a corollary of the main result, sufficient conditions for the existence of an eventually positive, oscillatory, and quickly oscillatory solution $x$ of this equation are obtained. Finally, a conditions under which considered equation possesses an asymptotically periodic solution are given.
Citation: Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications,, Second edition, (2000).

[2]

J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations,, J. Difference Equ. Appl., 12 (2006), 1257. doi: 10.1080/10236190600986594.

[3]

J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations,, Tatra Mt. Math. Publ., 43 (2009), 51. doi: 10.2478/v10127-009-0024-7.

[4]

J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations,, Abstr. Appl. Anal., (2011). doi: 10.1155/2011/370982.

[5]

J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence,, Appl. Math. Comput., 218 (2012), 9310. doi: 10.1016/j.amc.2012.03.010.

[6]

S. N. Elaydi, An Introduction to Difference Equations,, Third edition, (2005).

[7]

T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem,, J. Differ. Equations Appl., 19 (2013), 1645. doi: 10.1080/10236198.2013.769974.

[8]

I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations,, Adv. Difference Equ., (2008).

[9]

I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations,, Fasc. Math., 44 (2010), 53.

[10]

W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications,, Academic Press, (2001).

[11]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993). doi: 10.1007/978-94-017-1703-8.

[12]

M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations,, Appl. Math. Comput., 220 (2013), 365. doi: 10.1016/j.amc.2013.06.032.

[13]

J. Morchało, Perturbation theory for discrete Volterra equation,, Int. J. Pure Appl. Math., 68 (2011), 371.

[14]

J. Morchało, Volterra summation equations and second order difference equations,, Math. Bohem., 135 (2010), 41.

[15]

J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays,, Comput. Math. Appl., 64 (2012), 2233. doi: 10.1016/j.camwa.2012.01.075.

[16]

J. Musielak, Wstęp do Analizy Funkcjonalnej,, (in Polish) PWN, (1976).

[17]

E. Schmeidel, Properties of Solutions of Higher Order Difference Equations,, Publishing House of Poznan University of Technology, (2010).

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications,, Second edition, (2000).

[2]

J. Appleby, I. Györi and D. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations,, J. Difference Equ. Appl., 12 (2006), 1257. doi: 10.1080/10236190600986594.

[3]

J. Diblík, M. Růžičková and E. Schmeidel, Existence of asymptotically periodic solutions of scalar Volterra difference equations,, Tatra Mt. Math. Publ., 43 (2009), 51. doi: 10.2478/v10127-009-0024-7.

[4]

J. Diblík, M. Růžičková, E. Schmeidel and M. Zbąszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations,, Abstr. Appl. Anal., (2011). doi: 10.1155/2011/370982.

[5]

J. Diblík and E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence,, Appl. Math. Comput., 218 (2012), 9310. doi: 10.1016/j.amc.2012.03.010.

[6]

S. N. Elaydi, An Introduction to Difference Equations,, Third edition, (2005).

[7]

T. Gronek and E. Schmeidel, Existence of a bounded solution of Volterra difference equations via Darbo's fixed point theorem,, J. Differ. Equations Appl., 19 (2013), 1645. doi: 10.1080/10236198.2013.769974.

[8]

I. Györi and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference equations,, Adv. Difference Equ., (2008).

[9]

I. Györi and D. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations,, Fasc. Math., 44 (2010), 53.

[10]

W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications,, Academic Press, (2001).

[11]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993). doi: 10.1007/978-94-017-1703-8.

[12]

M. Migda and J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations,, Appl. Math. Comput., 220 (2013), 365. doi: 10.1016/j.amc.2013.06.032.

[13]

J. Morchało, Perturbation theory for discrete Volterra equation,, Int. J. Pure Appl. Math., 68 (2011), 371.

[14]

J. Morchało, Volterra summation equations and second order difference equations,, Math. Bohem., 135 (2010), 41.

[15]

J. Morchało and M. Migda, Boundedness of solutions of difference systems with delays,, Comput. Math. Appl., 64 (2012), 2233. doi: 10.1016/j.camwa.2012.01.075.

[16]

J. Musielak, Wstęp do Analizy Funkcjonalnej,, (in Polish) PWN, (1976).

[17]

E. Schmeidel, Properties of Solutions of Higher Order Difference Equations,, Publishing House of Poznan University of Technology, (2010).

[1]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[2]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[3]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[4]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[5]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[6]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[7]

Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075

[8]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[9]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure & Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

[10]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[11]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[12]

Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961

[13]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[14]

Daniel Núñez, Pedro J. Torres. Periodic solutions of twist type of an earth satellite equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 303-306. doi: 10.3934/dcds.2001.7.303

[15]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[16]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[17]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[18]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[19]

Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068

[20]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]