2014, 19(9): 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

A reaction-diffusion model of dengue transmission

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China

Received  July 2013 Revised  April 2014 Published  September 2014

This paper is devoted to the mathematical analysis of a reaction-diffusion model of dengue transmission. In the case of a bounded spatial habitat, we obtain the local stability as well as the global stability of either disease-free or endemic steady state in terms of the basic reproduction number $\mathcal{R}_0$. In the case of an unbounded spatial habitat, we establish the existence of the traveling wave solutions connecting the two constant steady states when $\mathcal{R}_0>1$, and the nonexistence of the traveling wave solutions that connect the disease-free steady state itself when $\mathcal{R}_0<1$. Numerical simulations are performed to illustrate the main analytic results.
Citation: Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993
References:
[1]

L. Cai, S. Guo, X. Li and M. Ghosh, Global dynamics of a dengue epidemic mathematical model,, Chaos, 42 (2009), 2297. doi: 10.1016/j.chaos.2009.03.130.

[2]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8.

[3]

, Centers for Diease Control and Prevention,, Available from: , ().

[4]

S. Chen and J. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production satutation and gene expression time delays,, Nonlinear Analysis: Real Wirld Applications, 14 (2013), 1871. doi: 10.1016/j.nonrwa.2012.12.004.

[5]

Y. Du and S. H. Hsu, A diffusive predator-prey model: In heterogeneous envirenmen,, J. Differential Equations, 203 (2004), 331. doi: 10.1016/j.jde.2004.05.010.

[6]

L. Esteva and C. Vargas, Analysis of a dengue disease transmission model,, Math. Biosci., 150 (1998), 131. doi: 10.1016/S0025-5564(98)10003-2.

[7]

J. Fang and J. Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems,, Discrete Contin. Dyn. Syst., 32 (2012), 3043. doi: 10.3934/dcds.2012.32.3043.

[8]

Q. Gan, R. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay,, IMA J. Appl. Math., 75 (2010), 392. doi: 10.1093/imamat/hxq009.

[9]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Math. Biosci., 215 (2008), 11. doi: 10.1016/j.mbs.2008.05.002.

[10]

D. J. Gubler, Dengue/dengue haemorrhagic fever: History and current status,, Novartis Foundation Symposium, 277 (2006), 3. doi: 10.1002/0470058005.ch2.

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981).

[12]

C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models,, Nonlinearity, 26 (2013), 121. doi: 10.1088/0951-7715/26/1/121.

[13]

J. Huang and X. Zou, Existence of travelling wavefronts of delayed reaction diffusion systems without monotonicity,, Discrete Contin. Dyn. Syst., 9 (2003), 925. doi: 10.3934/dcds.2003.9.925.

[14]

W. Huang, Traveling wave solutions for a class of predator-prey systems,, J. Dyn. Differ. Equ., 24 (2012), 633. doi: 10.1007/s10884-012-9255-4.

[15]

T. W. Hwang and F. B. Wang, Dynamics of dengue fever trasmission model with crowding effect in human population and spatial variation,, Discrete Contin. Dyn. Syst. (Ser. B), 18 (2013), 147. doi: 10.3934/dcdsb.2013.18.147.

[16]

X. Lin, P. Weng and C. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function,, J. Dyn. Differ. Equ., 23 (2011), 903. doi: 10.1007/s10884-011-9220-7.

[17]

F. X. Jousset, Geographic A. aegypti strains and dengue-2 virus: Susceptibility, ability to transmit to vertebrate and transovarial transmission,, Annales de Virologie, 132 (1981), 357. doi: 10.1016/S0769-2617(81)80006-8.

[18]

M. Y. L and H. Shu, Global dynamics of an in-host viral model with intracelluar delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[19]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253. doi: 10.1088/0951-7715/19/6/003.

[20]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential. Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846.

[21]

R. Martin and H. Smith, Absract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.2307/2001590.

[22]

C. C. McCluskey, Complete global stablity for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anaysis: Real World Applications, 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014.

[23]

, MedicineNet.com,, Available from: , ().

[24]

J. D. Murray, Mathematical Biology: I. An Introduction,, Springer, (2002).

[25]

C. V. Pao, Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays,, Nonlinear Analalysis: Real World Application, 5 (2004), 91. doi: 10.1016/S1468-1218(03)00018-X.

[26]

L. Rosen and D. A. Shroyer, Transovarial transmission of dengue viruses by mosquitoes: A. Albopictus and A. Aegypti,, Am. J. Trop. Med. Hyg., 32 (1983), 1108.

[27]

J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model,, Chaos, 39 (2009), 936. doi: 10.1016/j.chaos.2007.01.069.

[28]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430. doi: 10.1016/S0022-0396(03)00175-X.

[29]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems,, in Translations of Mathematical Monographs, (1994).

[30]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission,, SIAM J. Appl. Math., 71 (2011), 147. doi: 10.1137/090775890.

[31]

X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive perdator-prey systems: disease putbreak propagatton,, Discrete Contin. Dyn. Syst., 32 (2013), 3302.

[32]

Z. C. Wang, W. T. Li and S. G. Ruan, Traveling wave fronts in reaction-diffusion systems with spatiotemporal delays,, J. Differential Equations, 222 (2006), 185. doi: 10.1016/j.jde.2005.08.010.

[33]

P. Weng and Z. Xu, Wavefronts for a global reaction-diffusion systems with inifinite distributed delay,, J. Math. Anal. Appl., 345 (2008), 522. doi: 10.1016/j.jmaa.2008.04.039.

[34]

, World Health Organization, 2013,, Available from: , ().

[35]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delays,, J. Dyn. Differ. Equ., 13 (2001), 651. doi: 10.1023/A:1016690424892.

[36]

R. Xu and Z. Ma, An HBV model with diffusion and time delay,, J. Theor. Biol., 257 (2009), 449. doi: 10.1016/j.jtbi.2009.01.001.

[37]

X.-Q. Zhao and W. Wang, Fisher waves in an epidemic model,, Discrete Contin. Dyn. Syst. (Ser.B), 4 (2004), 1117. doi: 10.3934/dcdsb.2004.4.1117.

show all references

References:
[1]

L. Cai, S. Guo, X. Li and M. Ghosh, Global dynamics of a dengue epidemic mathematical model,, Chaos, 42 (2009), 2297. doi: 10.1016/j.chaos.2009.03.130.

[2]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8.

[3]

, Centers for Diease Control and Prevention,, Available from: , ().

[4]

S. Chen and J. Shi, Global attractivity of equilibrium in Gierer-Meinhardt system with activator production satutation and gene expression time delays,, Nonlinear Analysis: Real Wirld Applications, 14 (2013), 1871. doi: 10.1016/j.nonrwa.2012.12.004.

[5]

Y. Du and S. H. Hsu, A diffusive predator-prey model: In heterogeneous envirenmen,, J. Differential Equations, 203 (2004), 331. doi: 10.1016/j.jde.2004.05.010.

[6]

L. Esteva and C. Vargas, Analysis of a dengue disease transmission model,, Math. Biosci., 150 (1998), 131. doi: 10.1016/S0025-5564(98)10003-2.

[7]

J. Fang and J. Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems,, Discrete Contin. Dyn. Syst., 32 (2012), 3043. doi: 10.3934/dcds.2012.32.3043.

[8]

Q. Gan, R. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay,, IMA J. Appl. Math., 75 (2010), 392. doi: 10.1093/imamat/hxq009.

[9]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Math. Biosci., 215 (2008), 11. doi: 10.1016/j.mbs.2008.05.002.

[10]

D. J. Gubler, Dengue/dengue haemorrhagic fever: History and current status,, Novartis Foundation Symposium, 277 (2006), 3. doi: 10.1002/0470058005.ch2.

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981).

[12]

C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models,, Nonlinearity, 26 (2013), 121. doi: 10.1088/0951-7715/26/1/121.

[13]

J. Huang and X. Zou, Existence of travelling wavefronts of delayed reaction diffusion systems without monotonicity,, Discrete Contin. Dyn. Syst., 9 (2003), 925. doi: 10.3934/dcds.2003.9.925.

[14]

W. Huang, Traveling wave solutions for a class of predator-prey systems,, J. Dyn. Differ. Equ., 24 (2012), 633. doi: 10.1007/s10884-012-9255-4.

[15]

T. W. Hwang and F. B. Wang, Dynamics of dengue fever trasmission model with crowding effect in human population and spatial variation,, Discrete Contin. Dyn. Syst. (Ser. B), 18 (2013), 147. doi: 10.3934/dcdsb.2013.18.147.

[16]

X. Lin, P. Weng and C. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function,, J. Dyn. Differ. Equ., 23 (2011), 903. doi: 10.1007/s10884-011-9220-7.

[17]

F. X. Jousset, Geographic A. aegypti strains and dengue-2 virus: Susceptibility, ability to transmit to vertebrate and transovarial transmission,, Annales de Virologie, 132 (1981), 357. doi: 10.1016/S0769-2617(81)80006-8.

[18]

M. Y. L and H. Shu, Global dynamics of an in-host viral model with intracelluar delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[19]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253. doi: 10.1088/0951-7715/19/6/003.

[20]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential. Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846.

[21]

R. Martin and H. Smith, Absract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1. doi: 10.2307/2001590.

[22]

C. C. McCluskey, Complete global stablity for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anaysis: Real World Applications, 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014.

[23]

, MedicineNet.com,, Available from: , ().

[24]

J. D. Murray, Mathematical Biology: I. An Introduction,, Springer, (2002).

[25]

C. V. Pao, Global asymptotic stability of Lotka-Volterra competition systems with diffusion and time delays,, Nonlinear Analalysis: Real World Application, 5 (2004), 91. doi: 10.1016/S1468-1218(03)00018-X.

[26]

L. Rosen and D. A. Shroyer, Transovarial transmission of dengue viruses by mosquitoes: A. Albopictus and A. Aegypti,, Am. J. Trop. Med. Hyg., 32 (1983), 1108.

[27]

J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model,, Chaos, 39 (2009), 936. doi: 10.1016/j.chaos.2007.01.069.

[28]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430. doi: 10.1016/S0022-0396(03)00175-X.

[29]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems,, in Translations of Mathematical Monographs, (1994).

[30]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission,, SIAM J. Appl. Math., 71 (2011), 147. doi: 10.1137/090775890.

[31]

X.-S. Wang, H. Wang and J. Wu, Traveling waves of diffusive perdator-prey systems: disease putbreak propagatton,, Discrete Contin. Dyn. Syst., 32 (2013), 3302.

[32]

Z. C. Wang, W. T. Li and S. G. Ruan, Traveling wave fronts in reaction-diffusion systems with spatiotemporal delays,, J. Differential Equations, 222 (2006), 185. doi: 10.1016/j.jde.2005.08.010.

[33]

P. Weng and Z. Xu, Wavefronts for a global reaction-diffusion systems with inifinite distributed delay,, J. Math. Anal. Appl., 345 (2008), 522. doi: 10.1016/j.jmaa.2008.04.039.

[34]

, World Health Organization, 2013,, Available from: , ().

[35]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delays,, J. Dyn. Differ. Equ., 13 (2001), 651. doi: 10.1023/A:1016690424892.

[36]

R. Xu and Z. Ma, An HBV model with diffusion and time delay,, J. Theor. Biol., 257 (2009), 449. doi: 10.1016/j.jtbi.2009.01.001.

[37]

X.-Q. Zhao and W. Wang, Fisher waves in an epidemic model,, Discrete Contin. Dyn. Syst. (Ser.B), 4 (2004), 1117. doi: 10.3934/dcdsb.2004.4.1117.

[1]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[2]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[3]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[4]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[5]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[6]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[7]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[8]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[9]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[10]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[11]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[12]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[13]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[14]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[15]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[16]

Ming Mei, Yau Shu Wong. Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 743-752. doi: 10.3934/mbe.2009.6.743

[17]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[18]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[19]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[20]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]