# American Institute of Mathematical Sciences

December  2014, 19(10): 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

## The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor

 1 School of Science and Technology, University of New England, Armidale, NSW 2351 2 School of Mathematical Science, Yangzhou University, Yangzhou 225002

Received  March 2013 Revised  May 2013 Published  October 2014

In this paper we consider the diffusive competition model consisting of an invasive species with density $u$ and a native species with density $v$, in a radially symmetric setting with free boundary. We assume that $v$ undergoes diffusion and growth in $\mathbb{R}^N$, and $u$ exists initially in a ball ${r < h(0)}$, but invades into the environment with spreading front ${r = h(t)}$, with $h(t)$ evolving according to the free boundary condition $h'(t) = -\mu u_r(t, h(t))$, where $\mu>0$ is a given constant and $u(t,h(t))=0$. Thus the population range of $u$ is the expanding ball ${r < h(t)}$, while that for $v$ is $\mathbb{R}^N$. In the case that $u$ is a superior competitor (determined by the reaction terms), we show that a spreading-vanishing dichotomy holds, namely, as $t\to\infty$, either $h(t)\to\infty$ and $(u,v)\to (u^*,0)$, or $\lim_{t\to\infty} h(t)<\infty$ and $(u,v)\to (0,v^*)$, where $(u^*,0)$ and $(0, v^*)$ are the semitrivial steady-states of the system. Moreover, when spreading of $u$ happens, some rough estimates of the spreading speed are also given. When $u$ is an inferior competitor, we show that $(u,v)\to (0,v^*)$ as $t\to\infty$, so the invasive species $u$ always vanishes in the long run.
Citation: Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105
##### References:
 [1] G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583.  Google Scholar [2] X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800. doi: 10.1137/S0036141099351693.  Google Scholar [3] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley& Sons Ltd, 2003. doi: 10.1002/0470871296.  Google Scholar [4] Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II, J. Diff. Eqns., 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011.  Google Scholar [5] Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089.  Google Scholar [6] Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124. doi: 10.1017/S0024610701002289.  Google Scholar [7] J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dyn. Diff. Equat., 24 (2012), 873-895. doi: 10.1007/s10884-012-9267-0.  Google Scholar [8] Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonl. Anal. TMA, 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I.  Google Scholar [9] K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Diff. Eqns., 58 (1985), 15-21. doi: 10.1016/0022-0396(85)90020-8.  Google Scholar [10] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.  Google Scholar [11] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302.  Google Scholar [12] Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004.  Google Scholar [13] Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715.  Google Scholar [14] C. V. Pao, Nonliear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.  Google Scholar [15] H. L. Smith, Monotone Dynamical Systems, American Math. Soc., Providence, 1995.  Google Scholar [16] M. X. Wang, On some free boundary problems of the prey-predator model, J. Diff. Eqns., 256 (2014), 3365-3394. doi: 10.1016/j.jde.2014.02.013.  Google Scholar [17] J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., ().   Google Scholar

show all references

##### References:
 [1] G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583.  Google Scholar [2] X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800. doi: 10.1137/S0036141099351693.  Google Scholar [3] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley& Sons Ltd, 2003. doi: 10.1002/0470871296.  Google Scholar [4] Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II, J. Diff. Eqns., 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011.  Google Scholar [5] Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089.  Google Scholar [6] Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124. doi: 10.1017/S0024610701002289.  Google Scholar [7] J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, J. Dyn. Diff. Equat., 24 (2012), 873-895. doi: 10.1007/s10884-012-9267-0.  Google Scholar [8] Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonl. Anal. TMA, 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I.  Google Scholar [9] K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Diff. Eqns., 58 (1985), 15-21. doi: 10.1016/0022-0396(85)90020-8.  Google Scholar [10] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.  Google Scholar [11] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302.  Google Scholar [12] Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004.  Google Scholar [13] Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715.  Google Scholar [14] C. V. Pao, Nonliear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.  Google Scholar [15] H. L. Smith, Monotone Dynamical Systems, American Math. Soc., Providence, 1995.  Google Scholar [16] M. X. Wang, On some free boundary problems of the prey-predator model, J. Diff. Eqns., 256 (2014), 3365-3394. doi: 10.1016/j.jde.2014.02.013.  Google Scholar [17] J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., ().   Google Scholar
 [1] Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240 [2] Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121 [3] Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317 [4] Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213 [5] Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 [6] Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 [7] Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007 [8] Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 [9] Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 [10] Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 [11] Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713 [12] Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199 [13] Xuejun Pan, Hongying Shu, Yuming Chen. Dirichlet problem for a diffusive logistic population model with two delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3139-3155. doi: 10.3934/dcdss.2020134 [14] Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 [15] Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021145 [16] Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 [17] Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 [18] Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256 [19] Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360 [20] Chaohong Pan, Hongyong Wang, Chunhua Ou. Invasive speed for a competition-diffusion system with three species. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021194

2020 Impact Factor: 1.327