# American Institute of Mathematical Sciences

May  2014, 19(3): 789-799. doi: 10.3934/dcdsb.2014.19.789

## Multiple existence of traveling waves of a free boundary problem describing cell motility

 1 Meiji Institute of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan 2 School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525

Received  August 2013 Revised  December 2013 Published  February 2014

In this paper we consider a free boundary problem describing cell motility, which is a simple model of Umeda (see [11]). This model includes a non-local term and the interface equation with curvature. We prove that there exist at least two traveling waves of the model. First, we rewrite the problem into a fixed-point problem for a continuous map $T$ and then show that there exist at least two fixed points for the map $T$.
Citation: Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789
##### References:
 [1] P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media,, Physica D, 94 (1996), 205. doi: 10.1016/0167-2789(96)00042-5. Google Scholar [2] Y. S. Choi, J. Lee and R. Lui, Traveling wave solutions for a one-dimensional crawling nematode sperm cell model,, J. Math. Biol., 49 (2004), 310. doi: 10.1007/s00285-003-0255-1. Google Scholar [3] Y. S. Choi, P. Groulxb and R. Lui, Moving boundary problem for a one-dimensional crawling nematode sperm cell model,, Nonlinear Analysis: Real World Appl., 6 (2005), 874. doi: 10.1016/j.nonrwa.2004.11.005. Google Scholar [4] Y. S. Choi and R. Lui, Existence of traveling domain solutions for a two-dimensional moving boundary problem,, Trans. A. M. S., 361 (2009), 4027. doi: 10.1090/S0002-9947-09-04562-0. Google Scholar [5] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1998). doi: 10.1007/978-3-642-61798-0. Google Scholar [6] J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagation wave segments in wave front interaction model,, Physica D, 239 (2010), 230. doi: 10.1016/j.physd.2009.11.001. Google Scholar [7] A. Mogilner and L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells,, A quantitative analysis. Biophys. J., 83 (2002), 1237. doi: 10.1016/S0006-3495(02)73897-6. Google Scholar [8] A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models,, Biophys J., 101 (2011), 545. Google Scholar [9] A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod,, Bio. J., 97 (2009), 1853. Google Scholar [10] A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell,, J. Stat. Phys., 110 (2003), 1169. Google Scholar [11] H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion,, Differential and Integral Equations, 25 (2012), 93. Google Scholar [12] J. V. Small, M. Herzog and K. Anderson, Actin filament organization in the fish keratocyte lamellipodium,, J. Cell Biol., 129 (1995), 1275. doi: 10.1083/jcb.129.5.1275. Google Scholar [13] V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagation of chemical waves segments,, Phys. Rev. Lett., 94 (2005). Google Scholar

show all references

##### References:
 [1] P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media,, Physica D, 94 (1996), 205. doi: 10.1016/0167-2789(96)00042-5. Google Scholar [2] Y. S. Choi, J. Lee and R. Lui, Traveling wave solutions for a one-dimensional crawling nematode sperm cell model,, J. Math. Biol., 49 (2004), 310. doi: 10.1007/s00285-003-0255-1. Google Scholar [3] Y. S. Choi, P. Groulxb and R. Lui, Moving boundary problem for a one-dimensional crawling nematode sperm cell model,, Nonlinear Analysis: Real World Appl., 6 (2005), 874. doi: 10.1016/j.nonrwa.2004.11.005. Google Scholar [4] Y. S. Choi and R. Lui, Existence of traveling domain solutions for a two-dimensional moving boundary problem,, Trans. A. M. S., 361 (2009), 4027. doi: 10.1090/S0002-9947-09-04562-0. Google Scholar [5] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1998). doi: 10.1007/978-3-642-61798-0. Google Scholar [6] J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagation wave segments in wave front interaction model,, Physica D, 239 (2010), 230. doi: 10.1016/j.physd.2009.11.001. Google Scholar [7] A. Mogilner and L. Edelstein-Keshet, Regulation of actin dynamics in rapidly moving cells,, A quantitative analysis. Biophys. J., 83 (2002), 1237. doi: 10.1016/S0006-3495(02)73897-6. Google Scholar [8] A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models,, Biophys J., 101 (2011), 545. Google Scholar [9] A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod,, Bio. J., 97 (2009), 1853. Google Scholar [10] A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell,, J. Stat. Phys., 110 (2003), 1169. Google Scholar [11] H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion,, Differential and Integral Equations, 25 (2012), 93. Google Scholar [12] J. V. Small, M. Herzog and K. Anderson, Actin filament organization in the fish keratocyte lamellipodium,, J. Cell Biol., 129 (1995), 1275. doi: 10.1083/jcb.129.5.1275. Google Scholar [13] V. S. Zykov and K. Showalter, Wave front interaction model of stabilized propagation of chemical waves segments,, Phys. Rev. Lett., 94 (2005). Google Scholar
 [1] Matthew S. Mizuhara, Peng Zhang. Uniqueness and traveling waves in a cell motility model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2811-2835. doi: 10.3934/dcdsb.2018315 [2] Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 [3] Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 [4] Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989 [5] Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037 [6] Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006 [7] Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 [8] Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 [9] Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i [10] Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297 [11] Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017 [12] Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673 [13] Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365 [14] Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799 [15] Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179 [16] Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239 [17] Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233 [18] Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878 [19] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou. Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks & Heterogeneous Media, 2006, 1 (4) : 537-568. doi: 10.3934/nhm.2006.1.537 [20] Jonatan Lenells. Traveling waves in compressible elastic rods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 151-167. doi: 10.3934/dcdsb.2006.6.151

2018 Impact Factor: 1.008