January  2014, 19(1): 89-130. doi: 10.3934/dcdsb.2014.19.89

A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness

1. 

Science and Mathematics Faculty, School of Letters and Sciences, Arizona State University, Mesa, AZ 85212

2. 

Mathematical, Computational & Modeling Science Center, Arizona State University, Tempe, AZ 85287-1904

Received  April 2012 Revised  September 2013 Published  December 2013

The focus here is on the study disease dynamics under the assumption that a critical mass of susceptible individuals is required to guarantee the population's survival. Specifically, the emphasis is on the study of the role of an Allee effect on a Susceptible-Infectious (SI) model where the possibility that susceptible and infected individuals reproduce, with the S-class being the best fit. It is further assumed that infected individuals loose some of their ability to compete for resources, the cost imposed by the disease. These features are set in motion as simple model as possible. They turn out to lead to a rich set of dynamical outcomes. This toy model supports the possibility of multi-stability (hysteresis), saddle node and Hopf bifurcations, and catastrophic events (disease-induced extinction). The analyses provide a full picture of the system under disease-free dynamics including disease-induced extinction and proceed to identify required conditions for disease persistence. We conclude that increases in (i) the maximum birth rate of a species, or (ii) in the relative reproductive ability of infected individuals, or (iii) in the competitive ability of a infected individuals at low density levels, or in (iv) the per-capita death rate (including disease-induced) of infected individuals, can stabilize the system (resulting in disease persistence). We further conclude that increases in (a) the Allee effect threshold, or (b) in disease transmission rates, or in (c) the competitive ability of infected individuals at high density levels, can destabilize the system, possibly leading to the eventual collapse of the population. The results obtained from the analyses of this toy model highlight the significant role that factors like an Allee effect may play on the survival and persistence of animal populations. Scientists involved in biological conservation and pest management or interested in finding sustainability solutions, may find these results of this study compelling enough to suggest additional focused research on the role of disease in the regulation and persistence of animal populations. The risk faced by endangered species may turn out to be a lot higher than initially thought.
Citation: Yun Kang, Carlos Castillo-Chávez. A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 89-130. doi: 10.3934/dcdsb.2014.19.89
References:
[1]

W. C. Allee, The Social Life of Animals,, Norton, (1938). Google Scholar

[2]

L. H. R. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation,, Mathematical Biosciences, 152 (1998), 63. doi: 10.1016/S0025-5564(98)10018-4. Google Scholar

[3]

R. M. Anderson and R. M. May, Regulation and stability of host-parasite population interactions I: Regulatory processes; II: Destabilizing processes,, J. Anita. Ecol. 47 (1978), 47 (1978), 219. Google Scholar

[4]

E. Angulo, G. W. Roemer, L. Berec, J. Gascoigne and F. Courchamp, Double Allee effects and extinction in the island fox,, Conservation Biology, 21 (2007), 1082. doi: 10.1111/j.1523-1739.2007.00721.x. Google Scholar

[5]

L. Berec, D. S. Boukal and M. Berec, Linking the Allee effect, sexual reproduction, and temperature-dependent sex determination via spatial dynamics,, The American Naturalist, 157 (2001), 217. doi: 10.1086/318626. Google Scholar

[6]

D. S. Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084. Google Scholar

[7]

F. Berezovskaya, G. Karev, B. Song and C. Castillo-Chavez, A simple epidemic model with surprising dynamics,, Mathematical Biosciences and Engineering, 2 (2005), 133. Google Scholar

[8]

F. S. Berezovskaya, B. Song and C. Castillo-Chavez, Role of prey dispersal and refuges on predator-prey dynamics,, SIAM J. APPL. MATH., 70 (2010), 1821. doi: 10.1137/080730603. Google Scholar

[9]

F. Brauer, Backward bifurcations in simple vaccination models,, J. Math. Anal. Appl., 298 (2004), 418. doi: 10.1016/j.jmaa.2004.05.045. Google Scholar

[10]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, 2nd Edition, (2012). doi: 10.1007/978-1-4614-1686-9. Google Scholar

[11]

R. Burrows, H. Hofer and M. L. East, Population dynamics, intervention and survival in African wild dogs Lycaon pictus,, Proceedings of the Royal Society B: Biological Sciences, 262 (1995), 235. doi: 10.1098/rspb.1995.0201. Google Scholar

[12]

C. Castillo-Chavez, K. Cooke, W. Huang and S. A. Levin, Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus,, Applied Math. Letters, 2 (1989), 327. doi: 10.1016/0893-9659(89)90080-3. Google Scholar

[13]

C. Castillo-Chavez and A. A. Yakubu, Dispersal,disease and life history evolution,, Math. Biosc., 173 (2001), 35. doi: 10.1016/S0025-5564(01)00065-7. Google Scholar

[14]

C. Castillo-Chavez and B. Song, Models for the transmission dynamics of fanatic behaviors,, in Bioterrorism: Mathematical Modeling Applications to Homeland Security (eds. T. Banks and C. Castillo-Chavez), 28 (2003). Google Scholar

[15]

A. Cintron-Arias, C. Castillo-Chavez, L. M. Bettencourt, A. L. Lloyd and H. T. Banks, Estimation of the effective reproductive number from disease outbreak data,, Math. Biosc. & Eng., 6 (2009), 261. doi: 10.3934/mbe.2009.6.261. Google Scholar

[16]

B. R. Clark and S. H. Faeth, The consequences of larval aggregation in the butterfly Chlosyne lacinia,, Ecological Entomology, 22 (1997), 408. Google Scholar

[17]

D. L. Clifford, J. A. K. Mazet, E. J. Dubovi, D. K. Garcelon, T. J. Coonan, P. A. Conrad and L. Munson, Pathogen exposure in endangered island fox Urocyon littoralis populations: implications for conservation management,, Biological Conservation, 131 (2006), 230. doi: 10.1016/j.biocon.2006.04.029. Google Scholar

[18]

F. Courchamp,T. Clutton-Brock and B. Grenfell, Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus,, Animal Conservation, 3 (2000), 277. Google Scholar

[19]

F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation,, Oxford University Press, (2008). doi: 10.1093/acprof:oso/9780198570301.001.0001. Google Scholar

[20]

J. M. Cushing, Oscillations in age-structured population models with an Allee effect. Oscillations in nonlinear systems: Applications and numerical aspects,, J. Comput. Appl. Math., 52 (1994), 71. doi: 10.1016/0377-0427(94)90349-2. Google Scholar

[21]

P. Daszak, L. Berger, A. A. Cunningham, A. D. Hyatt, D. E. Green and R. Speare, Emerging infectious diseases and amphibian population declines,, Emerging Infectious Diseases, 5 (1999), 735. doi: 10.3201/eid0506.990601. Google Scholar

[22]

S. Del Valle, H. W. Hethcote, J. M. Hyman and C. Castillo-Chavez, Effects of behavioral changes in a smallpox attack model,, Mathematical Biosciences, 195 (2005), 228. doi: 10.1016/j.mbs.2005.03.006. Google Scholar

[23]

A. Deredec and F. Courchamp, Combined impacts of Allee effects and parasitism,, OIKOS, 112 (2006), 667. doi: 10.1111/j.0030-1299.2006.14243.x. Google Scholar

[24]

A. Drew, E. J. Allen and L. J. S. Allen, Analysis of climate and geographic factors affecting the presence of chytridiomycosis in Australia,, Dis. Aquat. Org., 68 (2006), 245. doi: 10.3354/dao068245. Google Scholar

[25]

O. Diekmann and M. Kretzshmar, Patterns in the effects of infectious diseases on population growth,, Journal of Mathematical Biology, 29 (1991), 539. doi: 10.1007/BF00164051. Google Scholar

[26]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases,, J. Math. Biol., 36 (1998), 227. doi: 10.1007/s002850050099. Google Scholar

[27]

G. Dwyer, S. A. Levin and L. Buttel, A simulation model of the population dynamics and evolution of myxomatosis,, Ecological Monographs, 60 (1990), 423. Google Scholar

[28]

L. Edelstein-Keshet, Mathematical Models in Biology,, SIAM, (2005). doi: 10.1137/1.9780898719147. Google Scholar

[29]

K. E. Emmert and L. J. S. Allen, Population persistence and extinction in a discrete-time stage-structured epidemic model,, J. Differ. Eqn Appl., 10 (2004), 1177. doi: 10.1080/10236190410001654151. Google Scholar

[30]

W. F. Fagan, M. A. Lewis, M. G. Neubert and P. Van Den Driessche, Invasion theory and biological control,, Ecology Letters, 5 (2002), 148. doi: 10.1046/j.1461-0248.2002.0_285.x. Google Scholar

[31]

E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddiac, G. Chowell, P. Gonzalez, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, M. Springborn, L. Velazquez and C. Villalobos, Adaptive human behavior in epidemiological models,, Proc. Natl. Acad. Sci., 108 (2011), 6306. doi: 10.1073/pnas.1011250108. Google Scholar

[32]

Z. Feng, C. Castillo-Chavez and A. Capurro, A model for tb with exogenous re-infection,, Journal of Theoretical Population Biology, 57 (2000), 235. Google Scholar

[33]

A. Friedman and A-A. Yakubu, Fatal disease and demographic Allee effect: Population persistence and extinction,, Journal of Biological Dynamics, 6 (2012). doi: 10.1080/17513758.2011.630489. Google Scholar

[34]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation,, Journal of Applied Ecology, 41 (2004), 801. doi: 10.1111/j.0021-8901.2004.00944.x. Google Scholar

[35]

B. Gonzalez, E. Huerta-Sanchez, A. Ortiz-Nieves, T. Vazquez-Alvarez and C. Kribs-Zaleta, Am I too fat? Bulimia as an epidemic,, Journal of Mathematical Psychology, 47 (2003), 515. doi: 10.1016/j.jmp.2003.08.002. Google Scholar

[36]

D. Greenhalgh and M. Griffiths, Dynamic phenomena arising from an extended core group model,, Mathematical Biosciences, 221 (2009), 136. doi: 10.1016/j.mbs.2009.08.003. Google Scholar

[37]

Y. Gruntfest, R. Arditi and Y. Dombrovsky, A fragmented population in a varying environment,, Journal of Theoretical Biology, 185 (1997), 539. Google Scholar

[38]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,, Springer-Verlag. 1983., (1983). Google Scholar

[39]

S. Gupta, R. M. Anderson and R. M. May, Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV,, Nature, 350 (1991), 356. Google Scholar

[40]

K. P. Hadeler and K. Dietz, Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations,, Comput. Math. Appl., 9 (1983), 415. doi: 10.1016/0898-1221(83)90056-1. Google Scholar

[41]

K. P. Hadeler and J. Müfiller, The effects of vaccination on sexually transmitted disease in heterosexual populations,, In Mathematical Population Dynamics (eds. O. Arino, 1 (1992), 251. Google Scholar

[42]

K. P. Hadeler and C. Castillo-Chavez, A core group model for disease transmission,, Math. Biosci., 128 (1995), 41. doi: 10.1016/0025-5564(94)00066-9. Google Scholar

[43]

K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control,, Mathematical Biosciences, 146 (1997), 15. doi: 10.1016/S0025-5564(97)00027-8. Google Scholar

[44]

C. D. Harvell, C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld and M. D. Samuel, Climate warming and disease risks for terrestrial and marine biota,, Science, 296 (2002), 2158. doi: 10.1126/science.1063699. Google Scholar

[45]

H. Hethcote and J. Yorke, Gonorrhea: Transmission Dynamics and Control,, Lecture Notes in Biomathematics, (1984). Google Scholar

[46]

H. W. Hethcote and J. W. van Ark, Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs,, Math. Biosci., 84 (1987), 85. doi: 10.1016/0025-5564(87)90044-7. Google Scholar

[47]

F. M. Hilker, M. A. Lewis, H. Seno, M. Langlais and H. Malchow, Pathogens can slow down or reverse invasion fronts of their hosts,, Biol. Invasions, 7 (2005), 817. doi: 10.1007/s10530-005-5215-9. Google Scholar

[48]

F. M. Hilker, M. Langlais and H. Malchow, The Allee Effect and Infectious Diseases: Extinction, Multistability, and the (Dis-)Appearance of Oscillations,, The American Naturalist, 173 (2009), 72. doi: 10.1086/593357. Google Scholar

[49]

F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect,, Journal of Biological Dynamics, 4 (2010), 86. doi: 10.1080/17513750903026429. Google Scholar

[50]

K. R. Hopper and R. T. Roush, Mate finding, dispersal, number released, and the success of biological control introductions,, Ecological Entomology, 18 (1993), 321. doi: 10.1111/j.1365-2311.1993.tb01108.x. Google Scholar

[51]

V. Hutson, A theorem on average Liapunov functions,, Monatshefte für Mathematik, 98 (1984), 267. doi: 10.1007/BF01540776. Google Scholar

[52]

W. Huang, K. L. Cooke and C. Castillo-Chavez, Stability and bifurcation for a multiple group model for the dynamics of HIV/AIDS transmission,, SIAM J. Appl. Math., 52 (1992), 835. doi: 10.1137/0152047. Google Scholar

[53]

C. Castillo-Chavez and W. Huang, Age-structured Core Groups and their impact on HIV dynamics,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, 126 (2002), 261. doi: 10.1007/978-1-4613-0065-6_15. Google Scholar

[54]

S. R.-J. Jang and S. L. Diamond, A host-parasitoid interaction with Allee effects on the host,, Comp. Math. Appl., 53 (2007), 89. doi: 10.1016/j.camwa.2006.12.013. Google Scholar

[55]

Y. Kang and D. Armbruster, Dispersal effects on a two-patch discrete model for plant-herbivore interactions,, Journal of Theoretical Biology, 268 (2011), 84. doi: 10.1016/j.jtbi.2010.09.033. Google Scholar

[56]

Y. Kang and N. Lanchier, Expansion or extinction: deterministic and stochastic two-patch models with Allee effects,, Journal of Mathematical Biology, 62 (2011), 925. doi: 10.1007/s00285-010-0359-3. Google Scholar

[57]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. Roy. Soc. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[58]

C. M. Kribs-Zaleta, Center manifolds and normal forms in epidemic models,, in Mathematical Approaches for Emerging and Re-emerging Infectious Diseases: An Introduction (Edited by C. Castillo-Chavez, (2001), 269. Google Scholar

[59]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5. Google Scholar

[60]

R. Lande, Anthropogenic, ecological and genetic factors in extinction and conservation,, Researches on Population Ecology, 40 (1998), 259. Google Scholar

[61]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141. doi: 10.1006/tpbi.1993.1007. Google Scholar

[62]

V. Padrón and M. C. Trevisan, Effect of aggregating behavior on population recovery on a set of habitat islands,, Mathematical Biosciences, 165 (2000), 63. doi: 10.1016/S0025-5564(00)00005-5. Google Scholar

[63]

D. Pauly, V. Christensen, S. Guenette, T. J. Pitcher, U. R. Sumaila, C. J. Walters and D. Zeller, Towards sustainability in world fisheries,, Nature, 418 (2002), 689. doi: 10.1038/nature01017. Google Scholar

[64]

L. J. Rachowicz, J.-M. Hero, R. A. Alford, J. W. Taylor, J. A. T. Morgan, V. T. Vredenburg, J. P. Collins and C. J. Briggs, The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife,, Conserv. Biol., 19 (2005), 1441. doi: 10.1111/j.1523-1739.2005.00255.x. Google Scholar

[65]

F. Sanchez, X. Wang, C. Castillo-Chavez, P. Gruenewald and D. Gorman, Drinking as an epidemic, a simple mathematical model with recovery and relapse,, in Therapist's Guide to Evidence Based Relapse Prevention (Edited by Katie Witkiewitz and G. Alan Marlatt), (2007), 353. doi: 10.1016/B978-012369429-4/50046-X. Google Scholar

[66]

P. Scalia-Tomba, The effects of structural behavior change on the spread of HIV in one sex populations,, Math. Biosci., 107 (1991), 547. doi: 10.1016/0025-5564(91)90022-B. Google Scholar

[67]

K. Sherman and A. M. Duda, Large marine ecosystems: An emerging paradigm for fishery sustainability,, Fisheries, 24 (1999), 15. doi: 10.1577/1548-8446(1999)024<0015:LME>2.0.CO;2. Google Scholar

[68]

L. F. Skerrat, L. Berger, R. Speare, S. Cashins, K. R. McDonald, A. D. Phillott, H. B. Hines and N. Kenyon, Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs,, EcoHealth, 4 (2007), 125. doi: 10.1007/s10393-007-0093-5. Google Scholar

[69]

K. F. Smith, D. F. Sax and K. D. Lafferty, Evidence for the role of infectious disease in species extinction and endangerment,, Conservation Biology, 20 (2006), 1349. doi: 10.1111/j.1523-1739.2006.00524.x. Google Scholar

[70]

B. Song, Dynamical Epidemic Models and Their Applications,, Phd Dissertation, (2002). Google Scholar

[71]

B. Song, M. Garsow-Castillo, K. Rios-Soto, M. Mejran, L. Henso and C. Castillo-Chavez, Raves clubs, and ecstasy: The impact of peer pressure,, Journal of Mathematical Biosciences and Engineering, 3 (2006), 249. Google Scholar

[72]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology & Evolution, 14 (1999), 401. doi: 10.1016/S0169-5347(99)01684-5. Google Scholar

[73]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?, Oikos, 87 (1999), 185. doi: 10.2307/3547011. Google Scholar

[74]

H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?, Journal of Biological Dynamics, 3 (2009), 305. doi: 10.1080/17513750802376313. Google Scholar

[75]

P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation,, J. Math. Biol., 40 (2000), 525. doi: 10.1007/s002850000032. Google Scholar

[76]

X. Wang, Backward Bifurcation in a Mathematical Model for Tuberculosis with Loss of Immunity,, Ph.D. Thesis, (2005). Google Scholar

[77]

A-A. Yakubu, Allee effects in a discrete-time SIS epidemic model with infected newborns,, Journal of Difference Equations and Applications, 13 (2007), 341. doi: 10.1080/10236190601079076. Google Scholar

show all references

References:
[1]

W. C. Allee, The Social Life of Animals,, Norton, (1938). Google Scholar

[2]

L. H. R. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation,, Mathematical Biosciences, 152 (1998), 63. doi: 10.1016/S0025-5564(98)10018-4. Google Scholar

[3]

R. M. Anderson and R. M. May, Regulation and stability of host-parasite population interactions I: Regulatory processes; II: Destabilizing processes,, J. Anita. Ecol. 47 (1978), 47 (1978), 219. Google Scholar

[4]

E. Angulo, G. W. Roemer, L. Berec, J. Gascoigne and F. Courchamp, Double Allee effects and extinction in the island fox,, Conservation Biology, 21 (2007), 1082. doi: 10.1111/j.1523-1739.2007.00721.x. Google Scholar

[5]

L. Berec, D. S. Boukal and M. Berec, Linking the Allee effect, sexual reproduction, and temperature-dependent sex determination via spatial dynamics,, The American Naturalist, 157 (2001), 217. doi: 10.1086/318626. Google Scholar

[6]

D. S. Boukal and L. Berec, Single-species models of the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084. Google Scholar

[7]

F. Berezovskaya, G. Karev, B. Song and C. Castillo-Chavez, A simple epidemic model with surprising dynamics,, Mathematical Biosciences and Engineering, 2 (2005), 133. Google Scholar

[8]

F. S. Berezovskaya, B. Song and C. Castillo-Chavez, Role of prey dispersal and refuges on predator-prey dynamics,, SIAM J. APPL. MATH., 70 (2010), 1821. doi: 10.1137/080730603. Google Scholar

[9]

F. Brauer, Backward bifurcations in simple vaccination models,, J. Math. Anal. Appl., 298 (2004), 418. doi: 10.1016/j.jmaa.2004.05.045. Google Scholar

[10]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, 2nd Edition, (2012). doi: 10.1007/978-1-4614-1686-9. Google Scholar

[11]

R. Burrows, H. Hofer and M. L. East, Population dynamics, intervention and survival in African wild dogs Lycaon pictus,, Proceedings of the Royal Society B: Biological Sciences, 262 (1995), 235. doi: 10.1098/rspb.1995.0201. Google Scholar

[12]

C. Castillo-Chavez, K. Cooke, W. Huang and S. A. Levin, Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus,, Applied Math. Letters, 2 (1989), 327. doi: 10.1016/0893-9659(89)90080-3. Google Scholar

[13]

C. Castillo-Chavez and A. A. Yakubu, Dispersal,disease and life history evolution,, Math. Biosc., 173 (2001), 35. doi: 10.1016/S0025-5564(01)00065-7. Google Scholar

[14]

C. Castillo-Chavez and B. Song, Models for the transmission dynamics of fanatic behaviors,, in Bioterrorism: Mathematical Modeling Applications to Homeland Security (eds. T. Banks and C. Castillo-Chavez), 28 (2003). Google Scholar

[15]

A. Cintron-Arias, C. Castillo-Chavez, L. M. Bettencourt, A. L. Lloyd and H. T. Banks, Estimation of the effective reproductive number from disease outbreak data,, Math. Biosc. & Eng., 6 (2009), 261. doi: 10.3934/mbe.2009.6.261. Google Scholar

[16]

B. R. Clark and S. H. Faeth, The consequences of larval aggregation in the butterfly Chlosyne lacinia,, Ecological Entomology, 22 (1997), 408. Google Scholar

[17]

D. L. Clifford, J. A. K. Mazet, E. J. Dubovi, D. K. Garcelon, T. J. Coonan, P. A. Conrad and L. Munson, Pathogen exposure in endangered island fox Urocyon littoralis populations: implications for conservation management,, Biological Conservation, 131 (2006), 230. doi: 10.1016/j.biocon.2006.04.029. Google Scholar

[18]

F. Courchamp,T. Clutton-Brock and B. Grenfell, Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus,, Animal Conservation, 3 (2000), 277. Google Scholar

[19]

F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation,, Oxford University Press, (2008). doi: 10.1093/acprof:oso/9780198570301.001.0001. Google Scholar

[20]

J. M. Cushing, Oscillations in age-structured population models with an Allee effect. Oscillations in nonlinear systems: Applications and numerical aspects,, J. Comput. Appl. Math., 52 (1994), 71. doi: 10.1016/0377-0427(94)90349-2. Google Scholar

[21]

P. Daszak, L. Berger, A. A. Cunningham, A. D. Hyatt, D. E. Green and R. Speare, Emerging infectious diseases and amphibian population declines,, Emerging Infectious Diseases, 5 (1999), 735. doi: 10.3201/eid0506.990601. Google Scholar

[22]

S. Del Valle, H. W. Hethcote, J. M. Hyman and C. Castillo-Chavez, Effects of behavioral changes in a smallpox attack model,, Mathematical Biosciences, 195 (2005), 228. doi: 10.1016/j.mbs.2005.03.006. Google Scholar

[23]

A. Deredec and F. Courchamp, Combined impacts of Allee effects and parasitism,, OIKOS, 112 (2006), 667. doi: 10.1111/j.0030-1299.2006.14243.x. Google Scholar

[24]

A. Drew, E. J. Allen and L. J. S. Allen, Analysis of climate and geographic factors affecting the presence of chytridiomycosis in Australia,, Dis. Aquat. Org., 68 (2006), 245. doi: 10.3354/dao068245. Google Scholar

[25]

O. Diekmann and M. Kretzshmar, Patterns in the effects of infectious diseases on population growth,, Journal of Mathematical Biology, 29 (1991), 539. doi: 10.1007/BF00164051. Google Scholar

[26]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases,, J. Math. Biol., 36 (1998), 227. doi: 10.1007/s002850050099. Google Scholar

[27]

G. Dwyer, S. A. Levin and L. Buttel, A simulation model of the population dynamics and evolution of myxomatosis,, Ecological Monographs, 60 (1990), 423. Google Scholar

[28]

L. Edelstein-Keshet, Mathematical Models in Biology,, SIAM, (2005). doi: 10.1137/1.9780898719147. Google Scholar

[29]

K. E. Emmert and L. J. S. Allen, Population persistence and extinction in a discrete-time stage-structured epidemic model,, J. Differ. Eqn Appl., 10 (2004), 1177. doi: 10.1080/10236190410001654151. Google Scholar

[30]

W. F. Fagan, M. A. Lewis, M. G. Neubert and P. Van Den Driessche, Invasion theory and biological control,, Ecology Letters, 5 (2002), 148. doi: 10.1046/j.1461-0248.2002.0_285.x. Google Scholar

[31]

E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddiac, G. Chowell, P. Gonzalez, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, M. Springborn, L. Velazquez and C. Villalobos, Adaptive human behavior in epidemiological models,, Proc. Natl. Acad. Sci., 108 (2011), 6306. doi: 10.1073/pnas.1011250108. Google Scholar

[32]

Z. Feng, C. Castillo-Chavez and A. Capurro, A model for tb with exogenous re-infection,, Journal of Theoretical Population Biology, 57 (2000), 235. Google Scholar

[33]

A. Friedman and A-A. Yakubu, Fatal disease and demographic Allee effect: Population persistence and extinction,, Journal of Biological Dynamics, 6 (2012). doi: 10.1080/17513758.2011.630489. Google Scholar

[34]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation,, Journal of Applied Ecology, 41 (2004), 801. doi: 10.1111/j.0021-8901.2004.00944.x. Google Scholar

[35]

B. Gonzalez, E. Huerta-Sanchez, A. Ortiz-Nieves, T. Vazquez-Alvarez and C. Kribs-Zaleta, Am I too fat? Bulimia as an epidemic,, Journal of Mathematical Psychology, 47 (2003), 515. doi: 10.1016/j.jmp.2003.08.002. Google Scholar

[36]

D. Greenhalgh and M. Griffiths, Dynamic phenomena arising from an extended core group model,, Mathematical Biosciences, 221 (2009), 136. doi: 10.1016/j.mbs.2009.08.003. Google Scholar

[37]

Y. Gruntfest, R. Arditi and Y. Dombrovsky, A fragmented population in a varying environment,, Journal of Theoretical Biology, 185 (1997), 539. Google Scholar

[38]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,, Springer-Verlag. 1983., (1983). Google Scholar

[39]

S. Gupta, R. M. Anderson and R. M. May, Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV,, Nature, 350 (1991), 356. Google Scholar

[40]

K. P. Hadeler and K. Dietz, Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations,, Comput. Math. Appl., 9 (1983), 415. doi: 10.1016/0898-1221(83)90056-1. Google Scholar

[41]

K. P. Hadeler and J. Müfiller, The effects of vaccination on sexually transmitted disease in heterosexual populations,, In Mathematical Population Dynamics (eds. O. Arino, 1 (1992), 251. Google Scholar

[42]

K. P. Hadeler and C. Castillo-Chavez, A core group model for disease transmission,, Math. Biosci., 128 (1995), 41. doi: 10.1016/0025-5564(94)00066-9. Google Scholar

[43]

K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control,, Mathematical Biosciences, 146 (1997), 15. doi: 10.1016/S0025-5564(97)00027-8. Google Scholar

[44]

C. D. Harvell, C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld and M. D. Samuel, Climate warming and disease risks for terrestrial and marine biota,, Science, 296 (2002), 2158. doi: 10.1126/science.1063699. Google Scholar

[45]

H. Hethcote and J. Yorke, Gonorrhea: Transmission Dynamics and Control,, Lecture Notes in Biomathematics, (1984). Google Scholar

[46]

H. W. Hethcote and J. W. van Ark, Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs,, Math. Biosci., 84 (1987), 85. doi: 10.1016/0025-5564(87)90044-7. Google Scholar

[47]

F. M. Hilker, M. A. Lewis, H. Seno, M. Langlais and H. Malchow, Pathogens can slow down or reverse invasion fronts of their hosts,, Biol. Invasions, 7 (2005), 817. doi: 10.1007/s10530-005-5215-9. Google Scholar

[48]

F. M. Hilker, M. Langlais and H. Malchow, The Allee Effect and Infectious Diseases: Extinction, Multistability, and the (Dis-)Appearance of Oscillations,, The American Naturalist, 173 (2009), 72. doi: 10.1086/593357. Google Scholar

[49]

F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect,, Journal of Biological Dynamics, 4 (2010), 86. doi: 10.1080/17513750903026429. Google Scholar

[50]

K. R. Hopper and R. T. Roush, Mate finding, dispersal, number released, and the success of biological control introductions,, Ecological Entomology, 18 (1993), 321. doi: 10.1111/j.1365-2311.1993.tb01108.x. Google Scholar

[51]

V. Hutson, A theorem on average Liapunov functions,, Monatshefte für Mathematik, 98 (1984), 267. doi: 10.1007/BF01540776. Google Scholar

[52]

W. Huang, K. L. Cooke and C. Castillo-Chavez, Stability and bifurcation for a multiple group model for the dynamics of HIV/AIDS transmission,, SIAM J. Appl. Math., 52 (1992), 835. doi: 10.1137/0152047. Google Scholar

[53]

C. Castillo-Chavez and W. Huang, Age-structured Core Groups and their impact on HIV dynamics,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, 126 (2002), 261. doi: 10.1007/978-1-4613-0065-6_15. Google Scholar

[54]

S. R.-J. Jang and S. L. Diamond, A host-parasitoid interaction with Allee effects on the host,, Comp. Math. Appl., 53 (2007), 89. doi: 10.1016/j.camwa.2006.12.013. Google Scholar

[55]

Y. Kang and D. Armbruster, Dispersal effects on a two-patch discrete model for plant-herbivore interactions,, Journal of Theoretical Biology, 268 (2011), 84. doi: 10.1016/j.jtbi.2010.09.033. Google Scholar

[56]

Y. Kang and N. Lanchier, Expansion or extinction: deterministic and stochastic two-patch models with Allee effects,, Journal of Mathematical Biology, 62 (2011), 925. doi: 10.1007/s00285-010-0359-3. Google Scholar

[57]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. Roy. Soc. A, 115 (1927), 700. doi: 10.1098/rspa.1927.0118. Google Scholar

[58]

C. M. Kribs-Zaleta, Center manifolds and normal forms in epidemic models,, in Mathematical Approaches for Emerging and Re-emerging Infectious Diseases: An Introduction (Edited by C. Castillo-Chavez, (2001), 269. Google Scholar

[59]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5. Google Scholar

[60]

R. Lande, Anthropogenic, ecological and genetic factors in extinction and conservation,, Researches on Population Ecology, 40 (1998), 259. Google Scholar

[61]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141. doi: 10.1006/tpbi.1993.1007. Google Scholar

[62]

V. Padrón and M. C. Trevisan, Effect of aggregating behavior on population recovery on a set of habitat islands,, Mathematical Biosciences, 165 (2000), 63. doi: 10.1016/S0025-5564(00)00005-5. Google Scholar

[63]

D. Pauly, V. Christensen, S. Guenette, T. J. Pitcher, U. R. Sumaila, C. J. Walters and D. Zeller, Towards sustainability in world fisheries,, Nature, 418 (2002), 689. doi: 10.1038/nature01017. Google Scholar

[64]

L. J. Rachowicz, J.-M. Hero, R. A. Alford, J. W. Taylor, J. A. T. Morgan, V. T. Vredenburg, J. P. Collins and C. J. Briggs, The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife,, Conserv. Biol., 19 (2005), 1441. doi: 10.1111/j.1523-1739.2005.00255.x. Google Scholar

[65]

F. Sanchez, X. Wang, C. Castillo-Chavez, P. Gruenewald and D. Gorman, Drinking as an epidemic, a simple mathematical model with recovery and relapse,, in Therapist's Guide to Evidence Based Relapse Prevention (Edited by Katie Witkiewitz and G. Alan Marlatt), (2007), 353. doi: 10.1016/B978-012369429-4/50046-X. Google Scholar

[66]

P. Scalia-Tomba, The effects of structural behavior change on the spread of HIV in one sex populations,, Math. Biosci., 107 (1991), 547. doi: 10.1016/0025-5564(91)90022-B. Google Scholar

[67]

K. Sherman and A. M. Duda, Large marine ecosystems: An emerging paradigm for fishery sustainability,, Fisheries, 24 (1999), 15. doi: 10.1577/1548-8446(1999)024<0015:LME>2.0.CO;2. Google Scholar

[68]

L. F. Skerrat, L. Berger, R. Speare, S. Cashins, K. R. McDonald, A. D. Phillott, H. B. Hines and N. Kenyon, Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs,, EcoHealth, 4 (2007), 125. doi: 10.1007/s10393-007-0093-5. Google Scholar

[69]

K. F. Smith, D. F. Sax and K. D. Lafferty, Evidence for the role of infectious disease in species extinction and endangerment,, Conservation Biology, 20 (2006), 1349. doi: 10.1111/j.1523-1739.2006.00524.x. Google Scholar

[70]

B. Song, Dynamical Epidemic Models and Their Applications,, Phd Dissertation, (2002). Google Scholar

[71]

B. Song, M. Garsow-Castillo, K. Rios-Soto, M. Mejran, L. Henso and C. Castillo-Chavez, Raves clubs, and ecstasy: The impact of peer pressure,, Journal of Mathematical Biosciences and Engineering, 3 (2006), 249. Google Scholar

[72]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology & Evolution, 14 (1999), 401. doi: 10.1016/S0169-5347(99)01684-5. Google Scholar

[73]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?, Oikos, 87 (1999), 185. doi: 10.2307/3547011. Google Scholar

[74]

H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?, Journal of Biological Dynamics, 3 (2009), 305. doi: 10.1080/17513750802376313. Google Scholar

[75]

P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation,, J. Math. Biol., 40 (2000), 525. doi: 10.1007/s002850000032. Google Scholar

[76]

X. Wang, Backward Bifurcation in a Mathematical Model for Tuberculosis with Loss of Immunity,, Ph.D. Thesis, (2005). Google Scholar

[77]

A-A. Yakubu, Allee effects in a discrete-time SIS epidemic model with infected newborns,, Journal of Difference Equations and Applications, 13 (2007), 341. doi: 10.1080/10236190601079076. Google Scholar

[1]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[2]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[3]

Avner Friedman. PDE problems arising in mathematical biology. Networks & Heterogeneous Media, 2012, 7 (4) : 691-703. doi: 10.3934/nhm.2012.7.691

[4]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : ⅰ-ⅱ. doi: 10.3934/nhm.20191i

[5]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351

[6]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[7]

Edward J. Allen. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology. Mathematical Biosciences & Engineering, 2014, 11 (3) : 403-425. doi: 10.3934/mbe.2014.11.403

[8]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[9]

John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381-418. doi: 10.3934/mbe.2005.2.381

[10]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[11]

Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041

[12]

Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013

[13]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[14]

Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219

[15]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[16]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[17]

Qingdao Huang, Hong Qian. The dynamics of zeroth-order ultrasensitivity: A critical phenomenon in cell biology. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1457-1464. doi: 10.3934/dcdss.2011.4.1457

[18]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[19]

Eduardo Liz, Alfonso Ruiz-Herrera. Delayed population models with Allee effects and exploitation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 83-97. doi: 10.3934/mbe.2015.12.83

[20]

Jia Li. Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects. Mathematical Biosciences & Engineering, 2010, 7 (1) : 99-121. doi: 10.3934/mbe.2010.7.99

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]