2015, 20(5): 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

Stability and convergence of time-stepping methods for a nonlocal model for diffusion

1. 

Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, United States, United States

Received  November 2013 Revised  January 2015 Published  May 2015

A time-dependent nonlocal model for diffusion is considered. A feature of the model is that instead of boundary conditions, constraints over regions having finite measures are imposed. The explicit forward-Euler, implicit backward-Euler, and Crank-Nicolson methods are considered for discretizing the time derivative and piecewise-linear finite element methods are used for spatial discretization. The unconditional stability of the backward-Euler and Crank-Nicolson schemes and the conditional stability of the forward-Euler scheme are proved as are optimal error estimates for all three schemes. Comparisons with the analogous results for classical local diffusion problems, e.g., the heat equation, are provided as are the results of numerical experiments that illustrate the theoretical results.
Citation: Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315
References:
[1]

B. Aksoylu and T. Mengesha, Results on nonlocal boundary value problems,, Numer. Funct. Anal. Optim., 31 (2010), 1301. doi: 10.1080/01630563.2010.519136.

[2]

A. Buades, B. Coll and J. Morel, Image denoising methods: A new nonlocal principle,, SIAM Review, 52 (2010), 113. doi: 10.1137/090773908.

[3]

X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics,, Comput. Meth. Appl. Mech. Engrg., 200 (2011), 1237. doi: 10.1016/j.cma.2010.10.014.

[4]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints,, SIAM Review, 54 (2012), 667. doi: 10.1137/110833294.

[5]

Q. Du, L. Tian and X. Zhao, A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models,, SIAM J. Numer. Anal., 51 (2013), 1211. doi: 10.1137/120871638.

[6]

V. Ervin, N. Heuer and J. Roop, Numerical approximation of a time dependent, non-linear, fractional order diffusion equation,, SIAM J. Math. Anal., 45 (2007), 572. doi: 10.1137/050642757.

[7]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, Multiscale Model. Simul., 6 (2007), 595. doi: 10.1137/060669358.

[8]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Model. Simul., 7 (2008), 1005. doi: 10.1137/070698592.

[9]

M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems,, Multiscale Model. Simul., 8 (2010), 1581. doi: 10.1137/090766607.

[10]

Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators,, J. Sci. Comput., 42 (2010), 185. doi: 10.1007/s10915-009-9320-2.

[11]

H. Wang and H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model,, J. Comput. Phys., 231 (2012), 7730. doi: 10.1016/j.jcp.2012.06.009.

[12]

O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar,, J. Mech. Phys. Solids., 53 (2005), 705. doi: 10.1016/j.jmps.2004.08.006.

[13]

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions,, SIAM J. Math. Anal., 48 (2010), 1759. doi: 10.1137/090781267.

[14]

K. Zhou and Q. Du, Mathematical analysis for the peridynamic nonlocal continuum theory,, Math. Model. Numer. Anal., 45 (2011), 217. doi: 10.1051/m2an/2010040.

show all references

References:
[1]

B. Aksoylu and T. Mengesha, Results on nonlocal boundary value problems,, Numer. Funct. Anal. Optim., 31 (2010), 1301. doi: 10.1080/01630563.2010.519136.

[2]

A. Buades, B. Coll and J. Morel, Image denoising methods: A new nonlocal principle,, SIAM Review, 52 (2010), 113. doi: 10.1137/090773908.

[3]

X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics,, Comput. Meth. Appl. Mech. Engrg., 200 (2011), 1237. doi: 10.1016/j.cma.2010.10.014.

[4]

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints,, SIAM Review, 54 (2012), 667. doi: 10.1137/110833294.

[5]

Q. Du, L. Tian and X. Zhao, A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models,, SIAM J. Numer. Anal., 51 (2013), 1211. doi: 10.1137/120871638.

[6]

V. Ervin, N. Heuer and J. Roop, Numerical approximation of a time dependent, non-linear, fractional order diffusion equation,, SIAM J. Math. Anal., 45 (2007), 572. doi: 10.1137/050642757.

[7]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, Multiscale Model. Simul., 6 (2007), 595. doi: 10.1137/060669358.

[8]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, Multiscale Model. Simul., 7 (2008), 1005. doi: 10.1137/070698592.

[9]

M. Gunzburger and R. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems,, Multiscale Model. Simul., 8 (2010), 1581. doi: 10.1137/090766607.

[10]

Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators,, J. Sci. Comput., 42 (2010), 185. doi: 10.1007/s10915-009-9320-2.

[11]

H. Wang and H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model,, J. Comput. Phys., 231 (2012), 7730. doi: 10.1016/j.jcp.2012.06.009.

[12]

O. Weckner and R. Abeyaratne, The effect of long-range forces on the dynamics of a bar,, J. Mech. Phys. Solids., 53 (2005), 705. doi: 10.1016/j.jmps.2004.08.006.

[13]

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions,, SIAM J. Math. Anal., 48 (2010), 1759. doi: 10.1137/090781267.

[14]

K. Zhou and Q. Du, Mathematical analysis for the peridynamic nonlocal continuum theory,, Math. Model. Numer. Anal., 45 (2011), 217. doi: 10.1051/m2an/2010040.

[1]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[2]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[3]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[4]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[5]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[6]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[7]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[8]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[9]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[10]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems & Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[11]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[12]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[13]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[14]

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309

[15]

José A. Cañizo, Alexis Molino. Improved energy methods for nonlocal diffusion problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1405-1425. doi: 10.3934/dcds.2018057

[16]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[17]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[18]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[19]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[20]

Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]