October  2015, 20(8): 2453-2476. doi: 10.3934/dcdsb.2015.20.2453

Grid refinement in the construction of Lyapunov functions using radial basis functions

1. 

Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom

Received  September 2014 Revised  January 2015 Published  August 2015

Lyapunov functions are a main tool to determine the domain of attraction of equilibria in dynamical systems. Recently, several methods have been presented to construct a Lyapunov function for a given system. In this paper, we improve the construction method for Lyapunov functions using Radial Basis Functions. We combine this method with a new grid refinement algorithm based on Voronoi diagrams. Starting with a coarse grid and applying the refinement algorithm, we thus manage to reduce the number of data points needed to construct Lyapunov functions. Finally, we give numerical examples to illustrate our algorithms.
Citation: Najla Mohammed, Peter Giesl. Grid refinement in the construction of Lyapunov functions using radial basis functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2453-2476. doi: 10.3934/dcdsb.2015.20.2453
References:
[1]

M. Berg, O. Cheong, M. Kerveld and M. Overmars, Computational Geometry: Algorithms and Applications,, Springer-Verlag, (2008).   Google Scholar

[2]

M. D. Buhmann, Radial basis functions,, in Acta Numerica, (2000), 1.  doi: 10.1017/S0962492900000015.  Google Scholar

[3]

F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496.  doi: 10.1137/S036301299936316X.  Google Scholar

[4]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, in Handbook of Dynamical Systems, (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[5]

M. Floater and A. Iske, Multistep scattered data interpolation using compactly supported Radial Basis Functions,, J. Comput. Appl. Math., 73 (1996), 65.  doi: 10.1016/0377-0427(96)00035-0.  Google Scholar

[6]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Lecture Notes in Math., (1904).   Google Scholar

[7]

P. Giesl, Construction of a local and global Lyapunov function using Radial Basis Functions,, IMA J. Appl. Math., 73 (2008), 782.  doi: 10.1093/imamat/hxn018.  Google Scholar

[8]

P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, J. Math. Anal. Appl., 410 (2014), 292.  doi: 10.1016/j.jmaa.2013.08.014.  Google Scholar

[9]

P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2291.  doi: 10.3934/dcdsb.2015.20.2291.  Google Scholar

[10]

P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to Dynamical Systems,, SIAM J. Numer. Anal., 45 (2007), 1723.  doi: 10.1137/060658813.  Google Scholar

[11]

L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319.  doi: 10.1007/s002110050241.  Google Scholar

[12]

L. Grüne, Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783).  doi: 10.1007/b83677.  Google Scholar

[13]

S. Hafstein, A constructive converse Lyapunov theorem on exponential stability,, Discrete and Continuous Dynamical Systems - Series A, 10 (2004), 657.  doi: 10.3934/dcds.2004.10.657.  Google Scholar

[14]

S. Hafstein, An algorithm for constructing Lyapunov functions,, Monograph. Electron. J. Diff. Eqns., (2007).   Google Scholar

[15]

C. S. Hsu, Cell-to-cell Mapping,, Applied Mathematical Sciences, (1987).  doi: 10.1007/978-1-4757-3892-6.  Google Scholar

[16]

A. Iske, On the construction of kernel-based adaptive particle methods in numerical flow simulation,, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, (2013), 197.  doi: 10.1007/978-3-642-33221-0_12.  Google Scholar

[17]

S. Iyengar, K. Boroojeni and N. Balakrishnan, Mathematical Theories of Distributed Sensor Networks,, Springer, (2014).  doi: 10.1007/978-1-4419-8420-3.  Google Scholar

[18]

Z. Jian, Development of Strong Form Methods with Applications in Computational Mechanics,, PhD thesis, (2008).   Google Scholar

[19]

C. Kellett, Classical converse theorems in Lyapunov’s second method,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2333.  doi: 10.3934/dcdsb.2015.20.2333.  Google Scholar

[20]

R. Klein, Concrete and Abstract Voronoi Diagrams,, Lecture Notes in Computer Science, (1989).  doi: 10.1007/3-540-52055-4.  Google Scholar

[21]

J. Massera, On Liapounoff's conditions of stability,, Ann. of Math., 50 (1949), 705.   Google Scholar

[22]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB,, User's guide. Version 3.00 edition, (2013).   Google Scholar

[23]

P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza,, PhD thesis, (2000).   Google Scholar

[24]

F. Preparata and M. Shamos, Computational Geometry,, Texts and Monographs in Computer Science, (1985).  doi: 10.1007/978-1-4612-1098-6.  Google Scholar

[25]

J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,, J. Approx. Theory, 18 (1995), 548.  doi: 10.1006/jagm.1995.1021.  Google Scholar

[26]

R. Sibson, Development of strong form methods with applications in computational mechanics,, in Interpolating Multivariate Data, (1981).   Google Scholar

[27]

H. Wendland, Error estimates for interpolation by compactly supported Radial Basis Functions of minimal degree,, J. Approx. Theory, 93 (1998), 258.  doi: 10.1006/jath.1997.3137.  Google Scholar

[28]

H. Wendland, Scattered Data Approximation,, Cambridge Monographs on Applied and Computational Mathematics, (2005).   Google Scholar

[29]

X. Zhang, R. Ding and Y. Li, Adaptive RPIM meshless method,, in Proceedings of the 2011 International Conference on Multimedia Technology (ICMT), (2011), 2388.   Google Scholar

show all references

References:
[1]

M. Berg, O. Cheong, M. Kerveld and M. Overmars, Computational Geometry: Algorithms and Applications,, Springer-Verlag, (2008).   Google Scholar

[2]

M. D. Buhmann, Radial basis functions,, in Acta Numerica, (2000), 1.  doi: 10.1017/S0962492900000015.  Google Scholar

[3]

F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496.  doi: 10.1137/S036301299936316X.  Google Scholar

[4]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, in Handbook of Dynamical Systems, (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[5]

M. Floater and A. Iske, Multistep scattered data interpolation using compactly supported Radial Basis Functions,, J. Comput. Appl. Math., 73 (1996), 65.  doi: 10.1016/0377-0427(96)00035-0.  Google Scholar

[6]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, Lecture Notes in Math., (1904).   Google Scholar

[7]

P. Giesl, Construction of a local and global Lyapunov function using Radial Basis Functions,, IMA J. Appl. Math., 73 (2008), 782.  doi: 10.1093/imamat/hxn018.  Google Scholar

[8]

P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems,, J. Math. Anal. Appl., 410 (2014), 292.  doi: 10.1016/j.jmaa.2013.08.014.  Google Scholar

[9]

P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2291.  doi: 10.3934/dcdsb.2015.20.2291.  Google Scholar

[10]

P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to Dynamical Systems,, SIAM J. Numer. Anal., 45 (2007), 1723.  doi: 10.1137/060658813.  Google Scholar

[11]

L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319.  doi: 10.1007/s002110050241.  Google Scholar

[12]

L. Grüne, Asymptotic Behavior of Dynamical and Control Systems Under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783).  doi: 10.1007/b83677.  Google Scholar

[13]

S. Hafstein, A constructive converse Lyapunov theorem on exponential stability,, Discrete and Continuous Dynamical Systems - Series A, 10 (2004), 657.  doi: 10.3934/dcds.2004.10.657.  Google Scholar

[14]

S. Hafstein, An algorithm for constructing Lyapunov functions,, Monograph. Electron. J. Diff. Eqns., (2007).   Google Scholar

[15]

C. S. Hsu, Cell-to-cell Mapping,, Applied Mathematical Sciences, (1987).  doi: 10.1007/978-1-4757-3892-6.  Google Scholar

[16]

A. Iske, On the construction of kernel-based adaptive particle methods in numerical flow simulation,, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, (2013), 197.  doi: 10.1007/978-3-642-33221-0_12.  Google Scholar

[17]

S. Iyengar, K. Boroojeni and N. Balakrishnan, Mathematical Theories of Distributed Sensor Networks,, Springer, (2014).  doi: 10.1007/978-1-4419-8420-3.  Google Scholar

[18]

Z. Jian, Development of Strong Form Methods with Applications in Computational Mechanics,, PhD thesis, (2008).   Google Scholar

[19]

C. Kellett, Classical converse theorems in Lyapunov’s second method,, Discrete and Continuous Dynamical Systems - Series B, 8 (2015), 2333.  doi: 10.3934/dcdsb.2015.20.2333.  Google Scholar

[20]

R. Klein, Concrete and Abstract Voronoi Diagrams,, Lecture Notes in Computer Science, (1989).  doi: 10.1007/3-540-52055-4.  Google Scholar

[21]

J. Massera, On Liapounoff's conditions of stability,, Ann. of Math., 50 (1949), 705.   Google Scholar

[22]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB,, User's guide. Version 3.00 edition, (2013).   Google Scholar

[23]

P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza,, PhD thesis, (2000).   Google Scholar

[24]

F. Preparata and M. Shamos, Computational Geometry,, Texts and Monographs in Computer Science, (1985).  doi: 10.1007/978-1-4612-1098-6.  Google Scholar

[25]

J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,, J. Approx. Theory, 18 (1995), 548.  doi: 10.1006/jagm.1995.1021.  Google Scholar

[26]

R. Sibson, Development of strong form methods with applications in computational mechanics,, in Interpolating Multivariate Data, (1981).   Google Scholar

[27]

H. Wendland, Error estimates for interpolation by compactly supported Radial Basis Functions of minimal degree,, J. Approx. Theory, 93 (1998), 258.  doi: 10.1006/jath.1997.3137.  Google Scholar

[28]

H. Wendland, Scattered Data Approximation,, Cambridge Monographs on Applied and Computational Mathematics, (2005).   Google Scholar

[29]

X. Zhang, R. Ding and Y. Li, Adaptive RPIM meshless method,, in Proceedings of the 2011 International Conference on Multimedia Technology (ICMT), (2011), 2388.   Google Scholar

[1]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[2]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[5]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[6]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[7]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[8]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[9]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[10]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[11]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[12]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[13]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[16]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]