Citation: |
[1] |
R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367.doi: 10.1038/280361a0. |
[2] |
J. Arino, Disease in metapopulations, Modeling and Dynamics of Infectious Diseases, Higher Education Press, Beijing, 11 (2009), 64-122.doi: 10.1142/7223. |
[3] |
E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.doi: 10.1016/S0362-546X(01)00528-4. |
[4] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. |
[5] |
H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400.doi: 10.1016/j.amc.2011.10.015. |
[6] |
Y. Chen, J. Yang and F. Zhang, The global stability of an SIRS model with infection age, Math. Bios. Eng., 11 (2014), 449-469.doi: 10.3934/mbe.2014.11.449. |
[7] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[8] |
Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Analysis RWA, 13 (2012), 2120-2133.doi: 10.1016/j.nonrwa.2012.01.007. |
[9] |
B. Fang, X. Li, M. Martcheva and L. Cai, Global stability for a heroin model with two distributed delays, Discrete Cont. Dynamic. Syst. Series B, 19 (2014), 715-733.doi: 10.3934/dcdsb.2014.19.715. |
[10] |
T. Faria, Global dynamics for Lotka-Volterra systems with infinite delay and patch structure, Appl. Math. Comput., 245 (2014), 575-590.doi: 10.1016/j.amc.2014.08.009. |
[11] |
T. Faria and Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, Proceedings of the Royal Society of Edinburgh: Section A, 145 (2015), 301-330.doi: 10.1017/S0308210513001194. |
[12] |
M. G. M. Gomes, A. Margheri, G. F. Medley and E. C. Rebelo, Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence, J. Math. Biol., 51 (2005), 414-430.doi: 10.1007/s00285-005-0331-9. |
[13] |
H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canadian Appl. Math. Quart., 14 (2006), 259-284. |
[14] |
H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802.doi: 10.1090/S0002-9939-08-09341-6. |
[15] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Vol. 99, Springer, New York, 1993. |
[16] |
G. Huang and A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691.doi: 10.1016/j.aml.2013.01.010. |
[17] |
W. Kermack and A. McKendrick, Contributions to the mathematical theory of epidemics I, II and III, Bulletin of Mathematical Biology, 53 (1991), 33-55, 57-87 and 89-118. |
[18] |
T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model for population migration, Discrete and Continuous Dynamical System B, 19 (2014), 1105-1118.doi: 10.3934/dcdsb.2014.19.1105. |
[19] |
T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model with varying total population size, Appl. Math. Comput., 265 (2015), 785-798.doi: 10.1016/j.amc.2015.05.124. |
[20] |
T. Kuniya, Y. Muroya and Y. Enatsu, Threshold dynamics of an SIR epidemic model with hybrid of multi-group and patch structures, Math. Bios. Eng., 11 (2014), 1375-1393.doi: 10.3934/mbe.2014.11.1375. |
[21] |
A. Lajmanovich and J. A. Yorke, A deterministic model for Gonorrhea in a nonhomogeneous population, Math. Biosci, 28 (1976), 221-236.doi: 10.1016/0025-5564(76)90125-5. |
[22] |
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. |
[23] |
M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equat., 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003. |
[24] |
M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47.doi: 10.1016/j.jmaa.2009.09.017. |
[25] |
J. Liu and T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 24 (2011), 1685-1692.doi: 10.1016/j.aml.2011.04.019. |
[26] |
J. Liu and Y. Zhou, Global stability of an SIRS epidemic model with transport-related infection, Chaos Solitons and Fractals, 40 (2009), 145-158.doi: 10.1016/j.chaos.2007.07.047. |
[27] |
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonlinear Analysis RWA, 11 (2010), 55-59.doi: 10.1016/j.nonrwa.2008.10.014. |
[28] |
J. Mena-Lorca and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), 693-716.doi: 10.1007/BF00173264. |
[29] |
G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138-141.doi: 10.1016/j.mbs.2009.01.006. |
[30] |
Y. Muroya, Practical monotonous iterations for nonlinear equations, Memoirs of the Faculty of Science, Kyushu University Ser A, 22 (1968), 56-73.doi: 10.2206/kyushumfs.22.56. |
[31] |
Y. Muroya, A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model), Disc. Cont. Dyn. Sys. Supplement, 8 (2015), 999-1008.doi: 10.3934/dcdss.2015.8.999. |
[32] |
Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Analysis RWA, 14 (2013), 1693-1704.doi: 10.1016/j.nonrwa.2012.11.005. |
[33] |
Y. Muroya, Y. Enatsu and T. Kuniya, Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection, Acta Mathematica Scientia, 33 (2013), 341-361.doi: 10.1016/S0252-9602(13)60003-X. |
[34] |
Y. Muroya, Y. Enatsu and Y. Nakata, Monotone iterative techniques to SIRS epidemic models with nonlinear incidence rates and distributed delays, Nonlinear Analysis RWA, 12 (2011), 1897-1910.doi: 10.1016/j.nonrwa.2010.12.002. |
[35] |
Y. Muroya and T. Kuniya, Global stability of nonresident computer virus models, Math. Methods Appl. Sciences, 38 (2015), 281-295.doi: 10.1002/mma.3068. |
[36] |
Y. Muroya and T. Kuniya, Further stability analysis for a multi-group SIRS epidemic model with varying total population sizes, Appl. Math. Lett., 38 (2014), 73-78.doi: 10.1016/j.aml.2014.07.005. |
[37] |
Y. Muroya and T. Kuniya, Global stability for a delayed multi-group SIRS epidemic model with cure rate and incomplete recovery rate, Intern. J. Biomath., 8 (2015), 1550048.doi: 10.1142/S1793524515500485. |
[38] |
Y. Muroya, T. Kuniya and J. Wang, Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure, J. Math. Anal. Appl., 425 (2015), 415-439.doi: 10.1016/j.jmaa.2014.12.019. |
[39] |
Y. Muroya, H. Li and T. Kuniya, Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates, J. Math. Anal. Appl., 410 (2014), 719-732.doi: 10.1016/j.jmaa.2013.08.024. |
[40] |
Y. Muroya, H. Li and T. Kuniya, On global stability of a nonresident computer virus model, Acta. Math. Scientia., 34 (2014), 1427-1445.doi: 10.1016/S0252-9602(14)60094-1. |
[41] |
Y. Nakata, Y. Enatsu, H. Inaba, T. Kuniya, Y. Muroya and Y. Takeuchi, Stability of epidemic models with waning immunity, SUT Journal of Mathematics, 50 (2015), 205-245. |
[42] |
Y. Nakata, Y. Enatsu and Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays, Disc. Cont. Dyn. Sys. Supplement, 2 (2011), 1119-1128. |
[43] |
Y. Nakata and G. Röst, Global analysis for spread of infectious diseases via transportation networks, J. Math. Biol., 70 (2015), 1411-1456.doi: 10.1007/s00285-014-0801-z. |
[44] |
J. Ortega and W. Rheinboldt, Monotone iterations for nonlinear equations with application to Gauss-Seidel methods, SIAM J. Numer. Anal., 4 (1967), 171-190.doi: 10.1137/0704017. |
[45] |
H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Analysis RWA, 13 (2012), 1581-1592.doi: 10.1016/j.nonrwa.2011.11.016. |
[46] |
R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear distributed incidence, Comput. Math. Appl., 60 (2010), 2286-2291.doi: 10.1016/j.camwa.2010.08.020. |
[47] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[48] |
J. Wang, Y. Muroya and T. Kuniya, Global stability of a time-delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure, Journal of Nonlinear Science and Applications, 8 (2015), 578-599. |
[49] |
J. Wang, Y. Takeuchi and S. Liu, A multi-group SVEIR epidemic model with distributed delay and vaccination, Inter. J. Biomath., 5 (2012), 1260001(18 pages).doi: 10.1142/S1793524512600017. |
[50] |
E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Mathematical Biosciences, 208 (2007), 312-324.doi: 10.1016/j.mbs.2006.10.008. |
[51] |
Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Analysis RWA., 11 (2010), 995-1004.doi: 10.1016/j.nonrwa.2009.01.040. |
[52] |
Z. Yuan and X. Zou, Global threshold property in an epidemic models for disease with latency spreading in a heterogeneous host population, Nonlinear Analysis RWA., 11 (2010), 3479-3490.doi: 10.1016/j.nonrwa.2009.12.008. |
[53] |
X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Cann. Appl. Math. Quart., 4 (1996), 421-444. |