2015, 20(2): 385-395. doi: 10.3934/dcdsb.2015.20.385

Asymptotic behavior for a reaction-diffusion population model with delay

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010

2. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, United States

Received  May 2014 Revised  August 2014 Published  January 2015

In this paper, we study a reaction-diffusion population model with time delay. We establish a comparison principle for coupled upper/lower solutions and prove the existence/uniqueness result for the model. We then show the global asymptotic behavior of the model.
Citation: Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385
References:
[1]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays,, J. Differential Equations, 232 (2007), 104. doi: 10.1016/j.jde.2006.08.015.

[2]

M. V. Bartuccelli and S. A. Gourley, A Population model with time-dependent delay,, Math. Comput. Modelling, 26 (1997), 13. doi: 10.1016/S0895-7177(97)00237-9.

[3]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663. doi: 10.1137/0150099.

[4]

K. Deng, On a nonlocal reaction-diffusion population model,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 65. doi: 10.3934/dcdsb.2008.9.65.

[5]

S. A. Gourley and N. F. Briton, On a modified Volterra population equation with diffusion,, Nonlinear Anal., 21 (1993), 389. doi: 10.1016/0362-546X(93)90082-4.

[6]

Y. Kyrychko, S. A. Gourley and M. V. Bartuccelli, Comparison and convergence to equlibrium in a nonlocal delayed reaction-diffusion model on an infinite domain,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1015. doi: 10.3934/dcdsb.2005.5.1015.

[7]

R. Laister, Global asymptotic behavior in some functional parabolic equations,, Nonlinear Anal., 50 (2002), 347. doi: 10.1016/S0362-546X(01)00766-0.

[8]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103. doi: 10.1137/050638011.

[9]

M. Protter and H. Weinberger, Maximum Priciples in Differential Equations,, Prentice-Hall Inc, (1967).

[10]

R. Redlinger, Existence theorems for semilinear parabolic systems with functionals,, Nonlinear Anal., 8 (1984), 667. doi: 10.1016/0362-546X(84)90011-7.

[11]

R. Redlinger, On Volterra's population equation with diffusion,, SIAM J. Math. Anal., 16 (1985), 135. doi: 10.1137/0516008.

[12]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh. Ser. A, 134 (2004), 991. doi: 10.1017/S0308210500003590.

[13]

A. Schiaffino, On a diffusion Volterra equation,, Nonlinear Anal., 3 (1979), 595. doi: 10.1016/0362-546X(79)90088-9.

[14]

Z-C. Wang, W-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153. doi: 10.1016/j.jde.2007.03.025.

[15]

J. Wu and X-Q. Zhao, Permanence and convergence in multi-species competition systems with delay,, Trans. Amer. Math. Soc., 126 (1998), 1709. doi: 10.1090/S0002-9939-98-04522-5.

show all references

References:
[1]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays,, J. Differential Equations, 232 (2007), 104. doi: 10.1016/j.jde.2006.08.015.

[2]

M. V. Bartuccelli and S. A. Gourley, A Population model with time-dependent delay,, Math. Comput. Modelling, 26 (1997), 13. doi: 10.1016/S0895-7177(97)00237-9.

[3]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663. doi: 10.1137/0150099.

[4]

K. Deng, On a nonlocal reaction-diffusion population model,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 65. doi: 10.3934/dcdsb.2008.9.65.

[5]

S. A. Gourley and N. F. Briton, On a modified Volterra population equation with diffusion,, Nonlinear Anal., 21 (1993), 389. doi: 10.1016/0362-546X(93)90082-4.

[6]

Y. Kyrychko, S. A. Gourley and M. V. Bartuccelli, Comparison and convergence to equlibrium in a nonlocal delayed reaction-diffusion model on an infinite domain,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1015. doi: 10.3934/dcdsb.2005.5.1015.

[7]

R. Laister, Global asymptotic behavior in some functional parabolic equations,, Nonlinear Anal., 50 (2002), 347. doi: 10.1016/S0362-546X(01)00766-0.

[8]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103. doi: 10.1137/050638011.

[9]

M. Protter and H. Weinberger, Maximum Priciples in Differential Equations,, Prentice-Hall Inc, (1967).

[10]

R. Redlinger, Existence theorems for semilinear parabolic systems with functionals,, Nonlinear Anal., 8 (1984), 667. doi: 10.1016/0362-546X(84)90011-7.

[11]

R. Redlinger, On Volterra's population equation with diffusion,, SIAM J. Math. Anal., 16 (1985), 135. doi: 10.1137/0516008.

[12]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh. Ser. A, 134 (2004), 991. doi: 10.1017/S0308210500003590.

[13]

A. Schiaffino, On a diffusion Volterra equation,, Nonlinear Anal., 3 (1979), 595. doi: 10.1016/0362-546X(79)90088-9.

[14]

Z-C. Wang, W-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153. doi: 10.1016/j.jde.2007.03.025.

[15]

J. Wu and X-Q. Zhao, Permanence and convergence in multi-species competition systems with delay,, Trans. Amer. Math. Soc., 126 (1998), 1709. doi: 10.1090/S0002-9939-98-04522-5.

[1]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[2]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations & Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[3]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[4]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[5]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[6]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[7]

Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108

[8]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[9]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[10]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[11]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[12]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[13]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[14]

Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861

[15]

Chufen Wu, Dongmei Xiao, Xiao-Qiang Zhao. Asymptotic pattern of a migratory and nonmonotone population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1171-1195. doi: 10.3934/dcdsb.2014.19.1171

[16]

Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure & Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509

[17]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[18]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[19]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[20]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]