Citation: |
[1] |
M. Alfaro, J. Coville and G. Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait, Comm. Partial Differential Equations (CPDE), 38 (2013), 2126-2154.doi: 10.1080/03605302.2013.828069. |
[2] |
A. Arnold, L. Desvillettes and C. Prévost, Existence of nontrivial steady states for populations structured with respect to space and a continuous trait, Commun. Pure Appl. Anal., 11 (2012), 83-96. |
[3] |
O. Bénichou , V. Calvez, N. Meunier and R. Voituriez, Front acceleration by dynamic selection in fisher population waves, Phys. Rev. E, 86 (2012), 041908. |
[4] |
H. Berestycki and G. Chapuisat, Traveling fronts guided by the environment for reaction-diffusion equations, Networks and Heterogeneous Media, 8 (2013), 79-114.doi: 10.3934/nhm.2013.8.79. |
[5] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.doi: 10.1088/0951-7715/22/12/002. |
[6] |
E. Bouin and V. Calvez, Travelling waves for the cane toads equation with bounded traits, Nonlinearity, 27 (2014), 2233-2253, arXiv:1309.4755.doi: 10.1088/0951-7715/27/9/2233. |
[7] |
E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul and R. Voituriez, Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration, C. R. Math. Acad. Sci. Paris, 350 (2012), 761-766.doi: 10.1016/j.crma.2012.09.010. |
[8] |
E. Bouin and S. Mirrahimi, A Hamilton-Jacobi approach for a model of population structured by space and trait, preprint, arXiv:1307.8332. |
[9] |
H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Masson, 1983. |
[10] |
N. Champagnat, Mathematical Study of Stochastic Models of Evolution Belonging to the Ecological Theory of Adaptive Dynamics, Ph.D thesis, University of Nanterre (Paris X), 2004. |
[11] |
N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Process. Appl., 116 (2006), 1127-1160.doi: 10.1016/j.spa.2006.01.004. |
[12] |
N. Champagnat and S. Méléard, Invasion and adaptive evolution for individual-based structured populations, J. Math. Biol., 55 (2007), 147-188.doi: 10.1007/s00285-007-0072-z. |
[13] |
N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44.doi: 10.1080/15326340802437710. |
[14] |
J. Coville, Convergence to equilibrium for positive solutions of some mutation-selection model, preprint, arXiv:1308.6471. |
[15] |
J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, American Mathematical Society, Providence, 1964. |
[16] |
L. Desvillettes, R. Ferrière and C. Prevost, Infinite dimensional reaction-diffusion for population dynamics, Preprint CMLA, ENS Cachan, 2004. |
[17] |
U. Dieckmann, R. Law and J. A. J. Metz, The Geometry of Ecological Interactions: Symplifying Spatial Complexity, Cambridge Univ. Press, Cambridge, 2005.doi: 10.1017/CBO9780511525537. |
[18] |
R. Durrett and S. Levin, Stochastic spatial models: A user's guide to ecological applications, Phil. Trans. Roy. Soc. London, 343 (1994), 329-350. |
[19] |
J. A. Endler, Geographic Variation, Speciation, and Clines, Princeton university Press, 1977. |
[20] |
L. C. Evans, Partial Differential Equations, Second edition, American Mathematical Society, 2010. |
[21] |
D. Futuyama and G. Moreno, The evolution of ecological specialization, Ann. Rev. Ecol. Syst., 19 (1988), 207-233.doi: 10.1146/annurev.ecolsys.19.1.207. |
[22] |
R. Kassen, The experimental evolution of specialists, generalists and the maintenance of diversity, J. Evol. Biol., 15 (2002), 173-190.doi: 10.1046/j.1420-9101.2002.00377.x. |
[23] |
J. McGlad, Advanced Ecological Theory: Principles and Applications, Blackwell Science, Oxford, 1999. |
[24] |
E. Mayr, Animal Species and Evolution, Harvard University Press, Cambridge, 1963.doi: 10.4159/harvard.9780674865327. |
[25] |
J. D. Murray, Mathematical Biology, I: An Introduction, Springer, New York, NY, USA, 2002. |
[26] |
B. L. Phillips, G. P. Brown, J. K. Webb and R. Shine, Invasion and the evolution of speed in toads, Nature, 439 (2006), p803.doi: 10.1038/439803a. |
[27] |
G. Teschl, Ordinary Differential Equations and Dynamical Systems, American Mathematical Society, 2012. |
[28] |
D. Tilman and P. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, Princeton University Press, Princeton, NJ, 1996. |