\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Trajectory attractors for non-autonomous dissipative 2d Euler equations

Abstract / Introduction Related Papers Cited by
  • We construct the trajectory attractor $\mathfrak{A}_{\Sigma }$ for the non-autonomous dissipative 2d Euler systems with periodic boundary conditions that contain time dependent dissipation terms $-r(t)u$ such that $0<\alpha \le r(t)\le \beta$, for $t\ge 0$. External forces $g(x,t),x\in \mathbb{T}^{2},t\ge 0,$ also depend on time. The corresponding non-autonomous dissipative 2d Navier--Stokes systems with the same terms $-r(t)u$ and $g(x,t)$ and with viscosity $\nu >0$ also have the trajectory attractor $\mathfrak{A}_{\Sigma }^{\nu }.$ Such systems model large-scale geophysical processes in atmosphere and ocean. We prove that $\mathfrak{A}_{\Sigma }^{\nu }\rightarrow \mathfrak{A}_{\Sigma }$ as viscosity $\nu \rightarrow 0+$ in the corresponding metric space. Moreover, we establish the existence of the minimal limit $\mathfrak{A}_{\Sigma }^{\min }\subseteq \mathfrak{A}_{\Sigma }$ of the trajectory attractors $\mathfrak{A}_{\Sigma }^{\nu }$ as $\nu \rightarrow 0+.$ Every set $\mathfrak{A}_{\Sigma }^{\nu }$ is connected. We prove that $\mathfrak{A}_{\Sigma }^{\min }$ is a connected invariant subset of $\mathfrak{A}_{\Sigma }.$ The problem of the connectedness of the trajectory attractor $\mathfrak{A}_{\Sigma }$ itself remains open.
    Mathematics Subject Classification: 35B40, 37C70, 37L30, 35Q35, 35Q31.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. S. Alexandrov, Introduction to Set Theory and General Topology, Nauka, Moscow, 1977.

    [2]

    J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.

    [3]

    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow, 1989; North Holland, Amsterdam, 1992.

    [4]

    V. Barcilon, P. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.doi: 10.1137/0519099.

    [5]

    C. Bardos, Éxistence et unicité de la solution de l'equation d'Euler en dimensions deux, J. Math. Anal. Appl., 40 (1972), 769-790.doi: 10.1016/0022-247X(72)90019-4.

    [6]

    V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, C. R. Acad. Sci., Paris, Series I, 321 (1995), 1309-1314.doi: 10.1016/S0021-7824(97)89978-3.

    [7]

    V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for 2D Navier-Stokes systems and some generalizations, Top. Meth. Nonlin. Anal., J. Julius Schauder Center, 8 (1996), 217-243.

    [8]

    V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.doi: 10.1016/S0021-7824(97)89978-3.

    [9]

    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, Vol. 49, AMS, Providence, 2002.

    [10]

    V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for dissipative 2d Euler and Navier-Stokes equations, Russian J. Math. Phys., 15 (2008), 156-170.doi: 10.1134/S1061920808020039.

    [11]

    V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations, J. Math. Pures Appl., 96 (2011), 395-407.doi: 10.1016/j.matpur.2011.04.007.

    [12]

    P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press, Chicago and London, 1989.

    [13]

    Yu. A. Dubinskiĭ, Weak convergence in nonlinear elliptic and parabolic equations, Sb. Math., 67 (1965), 609-642.

    [14]

    A. A. Ilyin, The Euler equations with dissipation, Sb. Math., 74 (1993), 475-485.

    [15]

    A. A. Ilyin, A. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2 (2004), 403-426.doi: 10.4310/CMS.2004.v2.n3.a4.

    [16]

    A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier-Stokes equations, J. Nonlin. Sci., 16 (2006), 233-253.doi: 10.1007/s00332-005-0720-7.

    [17]

    A. A. Ilyin, Lieb-Thirring integral inequalities and sharp bounds for the dimension of the attractor of the Navier-Stokes equations with friction, Proc. Steklov Inst. Math., 255 (2006), 136-149.

    [18]

    O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.

    [19]

    J.-L. Lions, Quelques Méthodes de Résolutions Des Problèmes Aux Limites Non-linéaires, Dunod et Gauthier-Villars, Paris, 1969.

    [20]

    J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979.

    [21]

    J.-C. Saut, Remarks on the damped stationary Euler equations, Diff. Int. Eq., 3 (1990), 801-812.

    [22]

    R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984.

    [23]

    R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0645-3.

    [24]

    M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of three-dimensional Navier-Stokes systems, Math. Notes, 71 (2002), 177-193.doi: 10.1023/A:1014190629738.

    [25]

    M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Russian Math. Surveys., 66 (2011), 637-731.doi: 10.1070/RM2011v066n04ABEH004753.

    [26]

    V. I. Yudovich, Non stationary flow of an ideal incompressible liquid, J. Vych. Mat. i Mat. Fiz., 3 (1963), 1407-1456.doi: 10.1016/0041-5553(63)90247-7.

    [27]

    V. I. Yudovich, Some bounds for solutions of elliptic equations, Sb. Math., 59 (1962), 229-244.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return