Citation: |
[1] |
P. S. Alexandrov, Introduction to Set Theory and General Topology, Nauka, Moscow, 1977. |
[2] |
J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044. |
[3] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow, 1989; North Holland, Amsterdam, 1992. |
[4] |
V. Barcilon, P. Constantin and E. S. Titi, Existence of solutions to the Stommel-Charney model of the Gulf stream, SIAM J. Math. Anal., 19 (1988), 1355-1364.doi: 10.1137/0519099. |
[5] |
C. Bardos, Éxistence et unicité de la solution de l'equation d'Euler en dimensions deux, J. Math. Anal. Appl., 40 (1972), 769-790.doi: 10.1016/0022-247X(72)90019-4. |
[6] |
V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, C. R. Acad. Sci., Paris, Series I, 321 (1995), 1309-1314.doi: 10.1016/S0021-7824(97)89978-3. |
[7] |
V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for 2D Navier-Stokes systems and some generalizations, Top. Meth. Nonlin. Anal., J. Julius Schauder Center, 8 (1996), 217-243. |
[8] |
V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.doi: 10.1016/S0021-7824(97)89978-3. |
[9] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, Vol. 49, AMS, Providence, 2002. |
[10] |
V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for dissipative 2d Euler and Navier-Stokes equations, Russian J. Math. Phys., 15 (2008), 156-170.doi: 10.1134/S1061920808020039. |
[11] |
V. V. Chepyzhov, M. I. Vishik and S. V. Zelik, Strong trajectory attractors for dissipative Euler equations, J. Math. Pures Appl., 96 (2011), 395-407.doi: 10.1016/j.matpur.2011.04.007. |
[12] |
P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press, Chicago and London, 1989. |
[13] |
Yu. A. Dubinskiĭ, Weak convergence in nonlinear elliptic and parabolic equations, Sb. Math., 67 (1965), 609-642. |
[14] |
A. A. Ilyin, The Euler equations with dissipation, Sb. Math., 74 (1993), 475-485. |
[15] |
A. A. Ilyin, A. Miranville and E. S. Titi, Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier-Stokes equations, Commun. Math. Sci., 2 (2004), 403-426.doi: 10.4310/CMS.2004.v2.n3.a4. |
[16] |
A. A. Ilyin and E. S. Titi, Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier-Stokes equations, J. Nonlin. Sci., 16 (2006), 233-253.doi: 10.1007/s00332-005-0720-7. |
[17] |
A. A. Ilyin, Lieb-Thirring integral inequalities and sharp bounds for the dimension of the attractor of the Navier-Stokes equations with friction, Proc. Steklov Inst. Math., 255 (2006), 136-149. |
[18] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969. |
[19] |
J.-L. Lions, Quelques Méthodes de Résolutions Des Problèmes Aux Limites Non-linéaires, Dunod et Gauthier-Villars, Paris, 1969. |
[20] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979. |
[21] |
J.-C. Saut, Remarks on the damped stationary Euler equations, Diff. Int. Eq., 3 (1990), 801-812. |
[22] |
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984. |
[23] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0645-3. |
[24] |
M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of three-dimensional Navier-Stokes systems, Math. Notes, 71 (2002), 177-193.doi: 10.1023/A:1014190629738. |
[25] |
M. I. Vishik and V. V. Chepyzhov, Trajectory attractors of equations of mathematical physics, Russian Math. Surveys., 66 (2011), 637-731.doi: 10.1070/RM2011v066n04ABEH004753. |
[26] |
V. I. Yudovich, Non stationary flow of an ideal incompressible liquid, J. Vych. Mat. i Mat. Fiz., 3 (1963), 1407-1456.doi: 10.1016/0041-5553(63)90247-7. |
[27] |
V. I. Yudovich, Some bounds for solutions of elliptic equations, Sb. Math., 59 (1962), 229-244. |