2015, 20(3): 861-874. doi: 10.3934/dcdsb.2015.20.861

On Lyapunov exponents of difference equations with random delay

1. 

Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

2. 

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Vietnam

3. 

Institute for Analysis & Center for Dynamics, Department of Mathematics, Technische Universität Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany

Received  November 2013 Revised  August 2014 Published  January 2015

The multiplicative ergodic theorem by Oseledets on Lyapunov spectrum and Oseledets subspaces is extended to linear random difference equations with random delay. In contrast to the general multiplicative ergodic theorem by Lian and Lu, we can prove that a random dynamical system generated by a difference equation with random delay cannot have infinitely many Lyapunov exponents.
Citation: Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998). doi: 10.1007/978-3-662-12878-7.

[2]

L. Arnold and N. D. Cong, Generic properties of Lyapunov exponents,, Random Comput. Dynam., 2 (1994), 335.

[3]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory,, Springer-Verlag, (1982). doi: 10.1007/978-1-4615-6927-5.

[4]

H. Crauel, T. S. Doan and S. Siegmund, Difference equations with random delay,, J. Difference Equ. Appl., 15 (2009), 627. doi: 10.1080/10236190802612865.

[5]

T. S. Doan and S. Siegmund, Differential equations with random delay,, Fields Inst. Commun., 64 (2013), 279. doi: 10.1007/978-1-4614-4523-4_11.

[6]

R. C. Ferreira, M. R. S. Briones and F. Antoneli, A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks,, preprint, (2013).

[7]

M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369. doi: 10.1142/S0219493711003358.

[8]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473).

[9]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010). doi: 10.1090/S0065-9266-10-00574-0.

[10]

P. Walter, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).

[11]

F. Wu, G. G. Yin and L. Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching,, J. Differential Equations, 253 (2012), 878. doi: 10.1016/j.jde.2012.04.017.

[12]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715. doi: 10.3934/dcdsb.2013.18.1715.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998). doi: 10.1007/978-3-662-12878-7.

[2]

L. Arnold and N. D. Cong, Generic properties of Lyapunov exponents,, Random Comput. Dynam., 2 (1994), 335.

[3]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory,, Springer-Verlag, (1982). doi: 10.1007/978-1-4615-6927-5.

[4]

H. Crauel, T. S. Doan and S. Siegmund, Difference equations with random delay,, J. Difference Equ. Appl., 15 (2009), 627. doi: 10.1080/10236190802612865.

[5]

T. S. Doan and S. Siegmund, Differential equations with random delay,, Fields Inst. Commun., 64 (2013), 279. doi: 10.1007/978-1-4614-4523-4_11.

[6]

R. C. Ferreira, M. R. S. Briones and F. Antoneli, A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks,, preprint, (2013).

[7]

M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369. doi: 10.1142/S0219493711003358.

[8]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473).

[9]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010). doi: 10.1090/S0065-9266-10-00574-0.

[10]

P. Walter, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).

[11]

F. Wu, G. G. Yin and L. Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching,, J. Differential Equations, 253 (2012), 878. doi: 10.1016/j.jde.2012.04.017.

[12]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715. doi: 10.3934/dcdsb.2013.18.1715.

[1]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[2]

Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237

[3]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[4]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[5]

Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377

[6]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[7]

Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, José Valero. Non--autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 415-443. doi: 10.3934/dcds.2008.21.415

[8]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[9]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[10]

Tao Jiang, Xianming Liu, Jinqiao Duan. Approximation for random stable manifolds under multiplicative correlated noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3163-3174. doi: 10.3934/dcdsb.2016091

[11]

James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167

[12]

Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635

[13]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[14]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[15]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[16]

Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

[17]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

[18]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[19]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[20]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

[Back to Top]