2015, 20(3): 889-914. doi: 10.3934/dcdsb.2015.20.889

Remarks on linear-quadratic dissipative control systems

1. 

Dipartimento di Matematica e Informatica, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy

2. 

Departamento de Matemática Aplicada, E. Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid

Received  August 2013 Revised  May 2014 Published  January 2015

We study the concept of dissipativity in the sense of Willems for nonautonomous linear-quadratic (LQ) control systems. A nonautonomous system of Hamiltonian ODEs is associated with such an LQ system by way of the Pontryagin Maximum Principle. We relate the concepts of exponential dichotomy and weak disconjugacy for this Hamiltonian ODE to that of dissipativity for the LQ system.
Citation: Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889
References:
[1]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications,, Massob, (1987).

[2]

N. D. Cong, A generic bounded linear cocycle has simple Lyapunov spectrum,, Ergod. Th. Dynam. Sys., 25 (2005), 1775. doi: 10.1017/S0143385705000337.

[3]

W. A. Coppel, Disconjugacy,, Lecture Notes in Mathematics, (1971).

[4]

R. Ellis, Lectures on Topological Dynamics,, Benjamin, (1969).

[5]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems,, J. Math. Anal. Appl., 380 (2011), 853. doi: 10.1016/j.jmaa.2010.11.036.

[6]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, On linear-quadratic dissipative control processes with time-varying coefficients,, Discrete Contin. Dynam. Systems, 33 (2013), 193. doi: 10.3934/dcds.2013.33.193.

[7]

R. Fabbri, R. Johnson, S. Novo, C. Núñez and R. Obaya, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control,, in preparation., ().

[8]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes,, Discrete Contin. Dynam. Systems, 9 (2003), 677. doi: 10.3934/dcds.2003.9.677.

[9]

R. Fabbri, R. Johnson and C. Núñez, Disconjugacy and the rotation number for linear, nonautonomus linear Hamiltonian systems,, Ann. Mat. Pura App., 185 (2006).

[10]

R. Johnson and M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems,, Mem. Amer. Math. Soc., 136 (1998). doi: 10.1090/memo/0646.

[11]

R. Johnson, Ergodic theory and linear differential equations,, J. Differential Equations, 28 (1978), 23. doi: 10.1016/0022-0396(78)90077-3.

[12]

R. Johnson, The recurrent Hill's equation,, J. Differential Equations, 46 (1982), 165. doi: 10.1016/0022-0396(82)90114-0.

[13]

R. Johnson, S. Novo and R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems,, Illinois J. Math., 45 (2001), 803.

[14]

R. Johnson, C. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes,, J. Dynam. Differential Equations, 25 (2013), 679. doi: 10.1007/s10884-013-9300-y.

[15]

T. Kato, Perturbation Theory for Linear Operators,, Corrected printing of the second edition, (1995).

[16]

V. B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations,, Dokl. Akad. Nank. SSSR, 102 (1955), 877.

[17]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-70335-5.

[18]

Y. Matsushima, Differentiable Manifolds,, Marcel Dekker, (1972).

[19]

A. Mazurov and P. Pakshin, Stochastic dissipativity with risk-sensitive storage function and related control problems,, ICIC Express Letters, 3 (2009), 53.

[20]

V. M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients,, Diff. Urav., 4 (1968), 391.

[21]

V. I. Oseledets, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 179.

[22]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. I.H.E.S., 50 (1979), 27.

[23]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8.

[24]

H. L. Trentelman and J. C. Willems, Dissipative linear differential systems and the state-space H-infinity control problem,, Int. Jour. Robust Nonlin. Control, 10 (2000), 1039. doi: 10.1002/1099-1239(200009/10)10:11/12<1039::AID-RNC538>3.0.CO;2-5.

[25]

R. E. Vinograd, A problem suggested by N. P. Erugin,, Diff. Urav., 11 (1975), 632.

[26]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates,, Arch. Rational Mech. Anal., 45 (1972), 321. doi: 10.1007/BF00276493.

[27]

V. A. Yakubovich, Oscillatory properties of the solutions of canonical equations,, Amer. Math. Soc. Transl. Ser., 42 (1964), 247.

[28]

V. Yakubovich, Contribution to the abstract theory of optimal control I (in Russian),, Sib. Mat. Zh., 18 (1977), 685.

[29]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems I (in Russian),, Sib. Mat. Zh., 27 (1986), 181.

[30]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems II,, Siberian Math. J., 31 (1990), 1027. doi: 10.1007/BF00970068.

[31]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems,, IEEE Trans. Automat. Control, 52 (2007), 1039. doi: 10.1109/TAC.2007.899013.

show all references

References:
[1]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications,, Massob, (1987).

[2]

N. D. Cong, A generic bounded linear cocycle has simple Lyapunov spectrum,, Ergod. Th. Dynam. Sys., 25 (2005), 1775. doi: 10.1017/S0143385705000337.

[3]

W. A. Coppel, Disconjugacy,, Lecture Notes in Mathematics, (1971).

[4]

R. Ellis, Lectures on Topological Dynamics,, Benjamin, (1969).

[5]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems,, J. Math. Anal. Appl., 380 (2011), 853. doi: 10.1016/j.jmaa.2010.11.036.

[6]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, On linear-quadratic dissipative control processes with time-varying coefficients,, Discrete Contin. Dynam. Systems, 33 (2013), 193. doi: 10.3934/dcds.2013.33.193.

[7]

R. Fabbri, R. Johnson, S. Novo, C. Núñez and R. Obaya, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control,, in preparation., ().

[8]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes,, Discrete Contin. Dynam. Systems, 9 (2003), 677. doi: 10.3934/dcds.2003.9.677.

[9]

R. Fabbri, R. Johnson and C. Núñez, Disconjugacy and the rotation number for linear, nonautonomus linear Hamiltonian systems,, Ann. Mat. Pura App., 185 (2006).

[10]

R. Johnson and M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems,, Mem. Amer. Math. Soc., 136 (1998). doi: 10.1090/memo/0646.

[11]

R. Johnson, Ergodic theory and linear differential equations,, J. Differential Equations, 28 (1978), 23. doi: 10.1016/0022-0396(78)90077-3.

[12]

R. Johnson, The recurrent Hill's equation,, J. Differential Equations, 46 (1982), 165. doi: 10.1016/0022-0396(82)90114-0.

[13]

R. Johnson, S. Novo and R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems,, Illinois J. Math., 45 (2001), 803.

[14]

R. Johnson, C. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes,, J. Dynam. Differential Equations, 25 (2013), 679. doi: 10.1007/s10884-013-9300-y.

[15]

T. Kato, Perturbation Theory for Linear Operators,, Corrected printing of the second edition, (1995).

[16]

V. B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations,, Dokl. Akad. Nank. SSSR, 102 (1955), 877.

[17]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987). doi: 10.1007/978-3-642-70335-5.

[18]

Y. Matsushima, Differentiable Manifolds,, Marcel Dekker, (1972).

[19]

A. Mazurov and P. Pakshin, Stochastic dissipativity with risk-sensitive storage function and related control problems,, ICIC Express Letters, 3 (2009), 53.

[20]

V. M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients,, Diff. Urav., 4 (1968), 391.

[21]

V. I. Oseledets, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 179.

[22]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. I.H.E.S., 50 (1979), 27.

[23]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8.

[24]

H. L. Trentelman and J. C. Willems, Dissipative linear differential systems and the state-space H-infinity control problem,, Int. Jour. Robust Nonlin. Control, 10 (2000), 1039. doi: 10.1002/1099-1239(200009/10)10:11/12<1039::AID-RNC538>3.0.CO;2-5.

[25]

R. E. Vinograd, A problem suggested by N. P. Erugin,, Diff. Urav., 11 (1975), 632.

[26]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates,, Arch. Rational Mech. Anal., 45 (1972), 321. doi: 10.1007/BF00276493.

[27]

V. A. Yakubovich, Oscillatory properties of the solutions of canonical equations,, Amer. Math. Soc. Transl. Ser., 42 (1964), 247.

[28]

V. Yakubovich, Contribution to the abstract theory of optimal control I (in Russian),, Sib. Mat. Zh., 18 (1977), 685.

[29]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems I (in Russian),, Sib. Mat. Zh., 27 (1986), 181.

[30]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems II,, Siberian Math. J., 31 (1990), 1027. doi: 10.1007/BF00970068.

[31]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems,, IEEE Trans. Automat. Control, 52 (2007), 1039. doi: 10.1109/TAC.2007.899013.

[1]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[2]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[3]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[4]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[5]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[8]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[9]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[10]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[11]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[12]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021

[13]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure & Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

[14]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[15]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[16]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[17]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[18]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[19]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[20]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]