• Previous Article
    Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity
  • DCDS-B Home
  • This Issue
  • Next Article
    Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities
January  2016, 21(1): 103-119. doi: 10.3934/dcdsb.2016.21.103

Global behavior of delay differential equations model of HIV infection with apoptosis

1. 

Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Received  February 2015 Revised  May 2015 Published  November 2015

In this paper, a class of delay differential equations model of HIV infection dynamics with nonlinear transmissions and apoptosis induced by infected cells is proposed, and then the global properties of the model are considered. It shows that the infection-free equilibrium of the model is globally asymptotically stable if the basic reproduction number $R_{0}<1$, and globally attractive if $R_{0}=1$. The positive equilibrium of the model is locally asymptotically stable if $R_{0}>1$. Furthermore, it also shows that the model is permanent, and some explicit expressions for the eventual lower bounds of positive solutions of the model are given.
Citation: Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103
References:
[1]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts,, Philos. T. R. Soc. B, 291 (1981), 451. doi: 10.1098/rstb.1981.0005. Google Scholar

[2]

H. T. Banks, D. M. Bortz and S. E. Holte, Incorporation of variability into the modeling of viral delays in HIV infection dynamics,, Math. Biosci., 183 (2003), 63. doi: 10.1016/S0025-5564(02)00218-3. Google Scholar

[3]

A. L. Cunningham, H. Donaghy, A. N. Harman, M. Kim and S. G. Turville, Manipulation of dendritic cell function by viruses,, Curr. Opin. Microbiol., 13 (2010), 524. doi: 10.1016/j.mib.2010.06.002. Google Scholar

[4]

M. Carbonari, M. Cibati, A. M. Pesce, D. Sbarigia, P. Grossi, G. D'Offizi, G. Luzi and M. Fiorilli, Frequency of provirus-bearing CD4$^+$ cells in HIV type 1 infection correlates with extent of in vitro apoptosis of CD8$^+$ but not of CD4$^+$ cells,, AIDS Res. Hum. Retrov., 11 (1995), 789. Google Scholar

[5]

L. Conti, G. Rainaldi, P. Matarrese, B. Varano, R. Rivabene, S. Columba, A. Sato, F. Belardelli, W. Malorni and S. Gessani, The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: Possible implications for the pathogenesis of AIDS,, J. Exp. Med., 187 (1998), 403. doi: 10.1084/jem.187.3.403. Google Scholar

[6]

R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay,, J. Math. Biol., 46 (2003), 425. doi: 10.1007/s00285-002-0191-5. Google Scholar

[7]

W. Cheng, W. Ma and S. Guo, A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis,, Commun. Pur. Appl. Anal., (). Google Scholar

[8]

O. Diekmann, S. A. van Oils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[9]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: 10.1007/BF00178324. Google Scholar

[10]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[11]

J. Embretson, M. Zupancic, J. L. Ribas, A. Burke, P. Racz, K. T.-Racz and A. T. Haase, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS,, Nature, 362 (1993), 359. doi: 10.1038/362359a0. Google Scholar

[12]

B. Ensoli, G. Barillari, S. Z. Salahuddin, R. C. Gallo and F. W.-Staal, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients,, Nature, 345 (1990), 84. doi: 10.1038/345084a0. Google Scholar

[13]

Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model,, Nonlinear Anal.-Real, 13 (2012), 2120. doi: 10.1016/j.nonrwa.2012.01.007. Google Scholar

[14]

A. M. Elaiw and N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models,, Int. J. Biomath., 8 (2015). doi: 10.1142/S1793524515500588. Google Scholar

[15]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations,, J. Differ. Equations, 115 (1995), 173. doi: 10.1006/jdeq.1995.1011. Google Scholar

[16]

Z. Feng and L. Rong, The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens,, DIMACS Series in Discrete Math. Theor., 71 (2006), 161. Google Scholar

[17]

R. Fan, Y. Dong, G. Huang and Y. Takeuchi, Apoptosis in virus infection dynamics models,, J. Biol. Dyn., 8 (2014), 20. doi: 10.1080/17513758.2014.895433. Google Scholar

[18]

H. Garg, J. Mohl and A. Joshi, HIV-1 induced bystander apoptosis,, Viruses, 4 (2012), 3020. doi: 10.3390/v4113020. Google Scholar

[19]

M.-L. Gougeon, H. Lecoeur, A. Dulioust, M.-G. Enouf, M. Crouvoiser, C. Goujard, T. Debord and L. Montagnier, Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression,, J. Immunol., 156 (1996), 3509. Google Scholar

[20]

S. B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760. doi: 10.1137/0134064. Google Scholar

[21]

M. Heinkelein, S. Sopper and C. Jassoy, Contact of human immunodeficiency virus type 1-infected and uninfected CD4$^+$ T lymphocytes is highly cytolytic for both cells,, J. Virol., 69 (1995), 6925. Google Scholar

[22]

A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay,, P. Natl. Acad. Sci. USA, 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247. Google Scholar

[23]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004. Google Scholar

[24]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821. Google Scholar

[25]

G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara and T. Sasaki, Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics,, Jpn. J. Ind. Appl. Math., 28 (2011), 383. doi: 10.1007/s13160-011-0045-x. Google Scholar

[26]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dyn. Differ. Equ., 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[27]

J. K. Hale, P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[28]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[29]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[30]

A. Korobeinikov, Global properties of basic virus dynamics models,, B. Math. Biol., 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001. Google Scholar

[31]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, B. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[32]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, B. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x. Google Scholar

[33]

C. J. Li, D. J. Friedman, C. Wang, V. Metelev and A. B. Pardee, Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein,, Science, 268 (1995), 429. doi: 10.1126/science.7716549. Google Scholar

[34]

X. Li and S. Fu, Global stability of the virus dynamics model with intracellular delay and Crowley-Martin functional response,, Math. Method. Appl. Sci., 37 (2014), 1405. doi: 10.1002/mma.2895. Google Scholar

[35]

X. Lai and X. Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission,, SIAM J. Appl. Math., 74 (2014), 898. doi: 10.1137/130930145. Google Scholar

[36]

X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth,, J. Math. Anal. Appl., 426 (2015), 563. doi: 10.1016/j.jmaa.2014.10.086. Google Scholar

[37]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Eng., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837. Google Scholar

[38]

B. Nardelli, C. J. Gonzalez, M. Schechter and F. T. Valentine, CD4$^+$ blood lymphocytes are rapidly killed in vitro by contact with autologous human immunodeficiency virus-infected cells,, P. Natl. Acad. Sci. USA, 92 (1995), 7312. doi: 10.1073/pnas.92.16.7312. Google Scholar

[39]

M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000). Google Scholar

[40]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74. doi: 10.1126/science.272.5258.74. Google Scholar

[41]

P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay,, Math. Biosci., 163 (2000), 201. doi: 10.1016/S0025-5564(99)00055-3. Google Scholar

[42]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8. Google Scholar

[43]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107. Google Scholar

[44]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945. Google Scholar

[45]

N. Selliah and T. H. Finkel, Biochemical mechanisms of HIV induced T cell apoptosis,, Cell Death Differ., 8 (2001), 127. doi: 10.1038/sj.cdd.4400822. Google Scholar

[46]

H. Shu, L. Wang and J. Watmough, Global Stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses,, SIAM J. Appl. Math., 73 (2013), 1280. doi: 10.1137/120896463. Google Scholar

[47]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal.-Theor., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[48]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407. doi: 10.1137/0524026. Google Scholar

[49]

J. Wu and X.-Q. Zhao, Permanence and convergence in multi-species competition systems with delay,, P. Am. Math. Soc., 126 (1998), 1709. doi: 10.1090/S0002-9939-98-04522-5. Google Scholar

[50]

W. Wang, Global behavior of an SEIRS epidemic model with time delays,, Appl. Math. Lett., 15 (2002), 423. doi: 10.1016/S0893-9659(01)00153-7. Google Scholar

[51]

X. Wang, S. Liu and X. Song, Dynamics of a non-autonomous HIV-1 infection model with delays,, Int. J. Biomath., 6 (2013). doi: 10.1142/S1793524513500307. Google Scholar

[52]

R. A. Weiss, How does HIV cause AIDS?,, Science, 260 (1993), 1273. doi: 10.1126/science.8493571. Google Scholar

[53]

R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay,, J. Math. Anal. Appl., 375 (2011), 75. doi: 10.1016/j.jmaa.2010.08.055. Google Scholar

[54]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts,, Philos. T. R. Soc. B, 291 (1981), 451. doi: 10.1098/rstb.1981.0005. Google Scholar

[2]

H. T. Banks, D. M. Bortz and S. E. Holte, Incorporation of variability into the modeling of viral delays in HIV infection dynamics,, Math. Biosci., 183 (2003), 63. doi: 10.1016/S0025-5564(02)00218-3. Google Scholar

[3]

A. L. Cunningham, H. Donaghy, A. N. Harman, M. Kim and S. G. Turville, Manipulation of dendritic cell function by viruses,, Curr. Opin. Microbiol., 13 (2010), 524. doi: 10.1016/j.mib.2010.06.002. Google Scholar

[4]

M. Carbonari, M. Cibati, A. M. Pesce, D. Sbarigia, P. Grossi, G. D'Offizi, G. Luzi and M. Fiorilli, Frequency of provirus-bearing CD4$^+$ cells in HIV type 1 infection correlates with extent of in vitro apoptosis of CD8$^+$ but not of CD4$^+$ cells,, AIDS Res. Hum. Retrov., 11 (1995), 789. Google Scholar

[5]

L. Conti, G. Rainaldi, P. Matarrese, B. Varano, R. Rivabene, S. Columba, A. Sato, F. Belardelli, W. Malorni and S. Gessani, The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: Possible implications for the pathogenesis of AIDS,, J. Exp. Med., 187 (1998), 403. doi: 10.1084/jem.187.3.403. Google Scholar

[6]

R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay,, J. Math. Biol., 46 (2003), 425. doi: 10.1007/s00285-002-0191-5. Google Scholar

[7]

W. Cheng, W. Ma and S. Guo, A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis,, Commun. Pur. Appl. Anal., (). Google Scholar

[8]

O. Diekmann, S. A. van Oils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis,, Springer-Verlag, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[9]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365. doi: 10.1007/BF00178324. Google Scholar

[10]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[11]

J. Embretson, M. Zupancic, J. L. Ribas, A. Burke, P. Racz, K. T.-Racz and A. T. Haase, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS,, Nature, 362 (1993), 359. doi: 10.1038/362359a0. Google Scholar

[12]

B. Ensoli, G. Barillari, S. Z. Salahuddin, R. C. Gallo and F. W.-Staal, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients,, Nature, 345 (1990), 84. doi: 10.1038/345084a0. Google Scholar

[13]

Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model,, Nonlinear Anal.-Real, 13 (2012), 2120. doi: 10.1016/j.nonrwa.2012.01.007. Google Scholar

[14]

A. M. Elaiw and N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models,, Int. J. Biomath., 8 (2015). doi: 10.1142/S1793524515500588. Google Scholar

[15]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations,, J. Differ. Equations, 115 (1995), 173. doi: 10.1006/jdeq.1995.1011. Google Scholar

[16]

Z. Feng and L. Rong, The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens,, DIMACS Series in Discrete Math. Theor., 71 (2006), 161. Google Scholar

[17]

R. Fan, Y. Dong, G. Huang and Y. Takeuchi, Apoptosis in virus infection dynamics models,, J. Biol. Dyn., 8 (2014), 20. doi: 10.1080/17513758.2014.895433. Google Scholar

[18]

H. Garg, J. Mohl and A. Joshi, HIV-1 induced bystander apoptosis,, Viruses, 4 (2012), 3020. doi: 10.3390/v4113020. Google Scholar

[19]

M.-L. Gougeon, H. Lecoeur, A. Dulioust, M.-G. Enouf, M. Crouvoiser, C. Goujard, T. Debord and L. Montagnier, Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression,, J. Immunol., 156 (1996), 3509. Google Scholar

[20]

S. B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760. doi: 10.1137/0134064. Google Scholar

[21]

M. Heinkelein, S. Sopper and C. Jassoy, Contact of human immunodeficiency virus type 1-infected and uninfected CD4$^+$ T lymphocytes is highly cytolytic for both cells,, J. Virol., 69 (1995), 6925. Google Scholar

[22]

A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay,, P. Natl. Acad. Sci. USA, 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247. Google Scholar

[23]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004. Google Scholar

[24]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821. Google Scholar

[25]

G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara and T. Sasaki, Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics,, Jpn. J. Ind. Appl. Math., 28 (2011), 383. doi: 10.1007/s13160-011-0045-x. Google Scholar

[26]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dyn. Differ. Equ., 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[27]

J. K. Hale, P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[28]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[29]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[30]

A. Korobeinikov, Global properties of basic virus dynamics models,, B. Math. Biol., 66 (2004), 879. doi: 10.1016/j.bulm.2004.02.001. Google Scholar

[31]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, B. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[32]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, B. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x. Google Scholar

[33]

C. J. Li, D. J. Friedman, C. Wang, V. Metelev and A. B. Pardee, Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein,, Science, 268 (1995), 429. doi: 10.1126/science.7716549. Google Scholar

[34]

X. Li and S. Fu, Global stability of the virus dynamics model with intracellular delay and Crowley-Martin functional response,, Math. Method. Appl. Sci., 37 (2014), 1405. doi: 10.1002/mma.2895. Google Scholar

[35]

X. Lai and X. Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission,, SIAM J. Appl. Math., 74 (2014), 898. doi: 10.1137/130930145. Google Scholar

[36]

X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth,, J. Math. Anal. Appl., 426 (2015), 563. doi: 10.1016/j.jmaa.2014.10.086. Google Scholar

[37]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Eng., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837. Google Scholar

[38]

B. Nardelli, C. J. Gonzalez, M. Schechter and F. T. Valentine, CD4$^+$ blood lymphocytes are rapidly killed in vitro by contact with autologous human immunodeficiency virus-infected cells,, P. Natl. Acad. Sci. USA, 92 (1995), 7312. doi: 10.1073/pnas.92.16.7312. Google Scholar

[39]

M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000). Google Scholar

[40]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74. doi: 10.1126/science.272.5258.74. Google Scholar

[41]

P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay,, Math. Biosci., 163 (2000), 201. doi: 10.1016/S0025-5564(99)00055-3. Google Scholar

[42]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8. Google Scholar

[43]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107. Google Scholar

[44]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945. Google Scholar

[45]

N. Selliah and T. H. Finkel, Biochemical mechanisms of HIV induced T cell apoptosis,, Cell Death Differ., 8 (2001), 127. doi: 10.1038/sj.cdd.4400822. Google Scholar

[46]

H. Shu, L. Wang and J. Watmough, Global Stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses,, SIAM J. Appl. Math., 73 (2013), 1280. doi: 10.1137/120896463. Google Scholar

[47]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal.-Theor., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[48]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407. doi: 10.1137/0524026. Google Scholar

[49]

J. Wu and X.-Q. Zhao, Permanence and convergence in multi-species competition systems with delay,, P. Am. Math. Soc., 126 (1998), 1709. doi: 10.1090/S0002-9939-98-04522-5. Google Scholar

[50]

W. Wang, Global behavior of an SEIRS epidemic model with time delays,, Appl. Math. Lett., 15 (2002), 423. doi: 10.1016/S0893-9659(01)00153-7. Google Scholar

[51]

X. Wang, S. Liu and X. Song, Dynamics of a non-autonomous HIV-1 infection model with delays,, Int. J. Biomath., 6 (2013). doi: 10.1142/S1793524513500307. Google Scholar

[52]

R. A. Weiss, How does HIV cause AIDS?,, Science, 260 (1993), 1273. doi: 10.1126/science.8493571. Google Scholar

[53]

R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay,, J. Math. Anal. Appl., 375 (2011), 75. doi: 10.1016/j.jmaa.2010.08.055. Google Scholar

[54]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

[1]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[2]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[3]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[4]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[5]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[6]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[7]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[8]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[9]

Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191

[10]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[11]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[12]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[13]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[14]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[15]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[16]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[17]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[18]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

[19]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[20]

Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]