June  2016, 21(4): 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China, China, China

Received  July 2015 Revised  November 2015 Published  March 2016

This paper considers the parabolic-parabolic Keller-Segel system with nonlinear sensitivity $u_t=\Delta u-\nabla (u^{\alpha}\nabla v)$, $v_t=\Delta v-v+u$, subject to homogeneous Neumann boundary conditions with smooth and bounded domain $\Omega\subset\mathbb{R}^{n}$, $n\geq1$. It is proved that if $\alpha\geq\max\{1,\frac{2}{n}\}$, then the solutions are globally bounded, and both the components $u$ and $v$ decay to the same constant steady state $\bar{u}_0=\frac{1}{|\Omega|}\int_\Omega u_0(x) dx$ exponentially in the $L^\infty$-norm provided both $\|u_0\|_{L^{q^{\ast}}(\Omega)}$ and $\|\nabla v_0\|_{L^{p^{\ast}}(\Omega)}$ small enough with $q^{\ast}=\frac{n\alpha K}{n+K}$, $p^{\ast}=\frac{n\alpha K}{n+K-n\alpha}$, $K\in[n,2n\alpha-n]\cap ((\alpha-1)n,\infty)$.
Citation: Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317
References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715. Google Scholar

[2]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces,, Discrete Contin. Dyn. Syst., 35 (2015), 1891. doi: 10.3934/dcds.2015.35.1891. Google Scholar

[3]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. doi: 10.1016/j.jde.2012.01.045. Google Scholar

[4]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135. doi: 10.1007/s10440-013-9832-5. Google Scholar

[5]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models,, J. Differential Equations, 258 (2015), 2080. doi: 10.1016/j.jde.2014.12.004. Google Scholar

[6]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77. doi: 10.1002/mana.19981950106. Google Scholar

[7]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633. Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159. doi: 10.1017/S0956792501004363. Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[10]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[12]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[13]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042. Google Scholar

[14]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411. Google Scholar

[15]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441. Google Scholar

[16]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[18]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12. doi: 10.1002/mma.1146. Google Scholar

[19]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

show all references

References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715. Google Scholar

[2]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces,, Discrete Contin. Dyn. Syst., 35 (2015), 1891. doi: 10.3934/dcds.2015.35.1891. Google Scholar

[3]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. doi: 10.1016/j.jde.2012.01.045. Google Scholar

[4]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135. doi: 10.1007/s10440-013-9832-5. Google Scholar

[5]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models,, J. Differential Equations, 258 (2015), 2080. doi: 10.1016/j.jde.2014.12.004. Google Scholar

[6]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77. doi: 10.1002/mana.19981950106. Google Scholar

[7]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633. Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159. doi: 10.1017/S0956792501004363. Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[10]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[12]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[13]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042. Google Scholar

[14]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411. Google Scholar

[15]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441. Google Scholar

[16]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[18]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12. doi: 10.1002/mma.1146. Google Scholar

[19]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[1]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[2]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[3]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[4]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[5]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[6]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[7]

Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019059

[8]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[9]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

[10]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[11]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[12]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

[13]

Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209

[14]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[15]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[16]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[17]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[18]

Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 139-164. doi: 10.3934/dcdss.2020008

[19]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[20]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]