June  2016, 21(4): 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

A mathematical model for hepatitis B with infection-age structure

1. 

School of Science, Xi'an University of Technology, Xi'an 710048, China, China

Received  February 2015 Revised  November 2015 Published  March 2016

A model with age of infection is formulated to study the possible effects of variable infectivity on HBV transmission dynamics. The stability of equilibria and persistence of the model are analyzed. The results show that if the basic reproductive number $\mathcal{R}_0<1$, then the disease-free equilibrium is globally asymptotically stable. For $\mathcal{R}_0>1$, the disease is uniformly persistent, and a Lyapunov function is used to show that the unique endemic equilibrium is globally stable in a special case.
Citation: Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329
References:
[1]

, Hepatitis B. World Health Organization Fact Sheet N$^\circ$204, World Health Organization,, 2008. Available from: , ().

[2]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335. doi: 10.3934/mbe.2013.10.1335.

[3]

D. Candotti, O. Opare-Sem, H. Rezvan, F. Sarkodie and J. P. Allain, Molecular and serological characterization of hepatitis B virus in deferred Ghanaian blood donors with and without elevated alanine aminotransferase,, J. Viral. Hepat., 13 (2006), 715. doi: 10.1111/j.1365-2893.2006.00741.x.

[4]

W. J. Edmunds, G. F. Medley, D. J. Nokes, A. J. Hall and H. C. Whittle, The influence of age on the development of the hepatitis B carrier state,, Proc. R. Soc. Lond. B., 253 (1993), 197. doi: 10.1098/rspb.1993.0102.

[5]

A. Franceschetti and A. Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration,, J. Math. Biol., 57 (2008), 1. doi: 10.1007/s00285-007-0143-1.

[6]

D. Ganem and A. M. Prince, Hepatitis B virus infection-natural history and clinical consequences,, N. Engl. J. Med., 350 (2004), 1118. doi: 10.1056/NEJMra031087.

[7]

J. Hale, Theory of Functional Differential Equations,, Springer-Verlag, (1977).

[8]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025.

[9]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588.

[10]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process,, Math. Popul. Stud., 1 (1988), 49. doi: 10.1080/08898488809525260.

[11]

M. Kane, Global programme for control of hepatitis B infection,, Vaccine, 13 (1995). doi: 10.1016/0264-410X(95)80050-N.

[12]

G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus endemicity: Heterogeneity, catastrophic dynamics and control,, Nat. Med., 7 (2001), 619. doi: 10.1038/87953.

[13]

C. O'Leary, Z. Hong, F. Zhang, M. Dawood, G. Smart, K. Kaita and J. Wu, A Mathematical model to study the effect of hepatitis B virus vaccine and antivirus treatment among the Canadian Inuit population,, Eur. J. Clin. Microbiol. Infect. Dis., 29 (2010), 63. doi: 10.1007/s10096-009-0821-6.

[14]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[15]

P. Magal and X. Q. Zhao, Global attractors in uniformlu persistent dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173.

[16]

J. Mann and M. Roberts, Modelling the epidemiology of hepatitis B in New Zealand,, J. Theor. Biol., 269 (2011), 266. doi: 10.1016/j.jtbi.2010.10.028.

[17]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945.

[18]

H. R. Thieme, Persistence under relaxed point-dissipativity(with application to an endemic model),, SIAM J. Appl. Math., 24 (1993), 407. doi: 10.1137/0524026.

[19]

H. R. Thieme, Semiflows generated by Lipschitz perturbation of non-densely defined operators,, Diff. Integr. Equs., 3 (1990), 1035.

[20]

S. Thornley, C. Bullen and M. Roberts, Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy,, J. Theor. Biol., 254 (2008), 599. doi: 10.1016/j.jtbi.2008.06.022.

[21]

S. X. Zhang and Y. C. Zhou, The analysis and application of an HBV model,, Appl. Math. Model., 36 (2012), 1302. doi: 10.1016/j.apm.2011.07.087.

[22]

X. Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1.

[23]

S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China,, Int. J. epidemiol., 29 (1994), 744. doi: 10.1093/ije/29.4.744.

[24]

L. Zou, S. G. Ruan and W. N. Zhang, An age-structured model for the transmission dynamics of hepatitis B,, SIAM J. Appl. Math., 70 (2010), 3121. doi: 10.1137/090777645.

[25]

L. Zou, W. N. Zhang and S. G. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China,, J. Theor. Biol., 262 (2010), 330. doi: 10.1016/j.jtbi.2009.09.035.

show all references

References:
[1]

, Hepatitis B. World Health Organization Fact Sheet N$^\circ$204, World Health Organization,, 2008. Available from: , ().

[2]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335. doi: 10.3934/mbe.2013.10.1335.

[3]

D. Candotti, O. Opare-Sem, H. Rezvan, F. Sarkodie and J. P. Allain, Molecular and serological characterization of hepatitis B virus in deferred Ghanaian blood donors with and without elevated alanine aminotransferase,, J. Viral. Hepat., 13 (2006), 715. doi: 10.1111/j.1365-2893.2006.00741.x.

[4]

W. J. Edmunds, G. F. Medley, D. J. Nokes, A. J. Hall and H. C. Whittle, The influence of age on the development of the hepatitis B carrier state,, Proc. R. Soc. Lond. B., 253 (1993), 197. doi: 10.1098/rspb.1993.0102.

[5]

A. Franceschetti and A. Pugliese, Threshold behaviour of a SIR epidemic model with age structure and immigration,, J. Math. Biol., 57 (2008), 1. doi: 10.1007/s00285-007-0143-1.

[6]

D. Ganem and A. M. Prince, Hepatitis B virus infection-natural history and clinical consequences,, N. Engl. J. Med., 350 (2004), 1118. doi: 10.1056/NEJMra031087.

[7]

J. Hale, Theory of Functional Differential Equations,, Springer-Verlag, (1977).

[8]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025.

[9]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588.

[10]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process,, Math. Popul. Stud., 1 (1988), 49. doi: 10.1080/08898488809525260.

[11]

M. Kane, Global programme for control of hepatitis B infection,, Vaccine, 13 (1995). doi: 10.1016/0264-410X(95)80050-N.

[12]

G. F. Medley, N. A. Lindop, W. J. Edmunds and D. J. Nokes, Hepatitis-B virus endemicity: Heterogeneity, catastrophic dynamics and control,, Nat. Med., 7 (2001), 619. doi: 10.1038/87953.

[13]

C. O'Leary, Z. Hong, F. Zhang, M. Dawood, G. Smart, K. Kaita and J. Wu, A Mathematical model to study the effect of hepatitis B virus vaccine and antivirus treatment among the Canadian Inuit population,, Eur. J. Clin. Microbiol. Infect. Dis., 29 (2010), 63. doi: 10.1007/s10096-009-0821-6.

[14]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[15]

P. Magal and X. Q. Zhao, Global attractors in uniformlu persistent dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173.

[16]

J. Mann and M. Roberts, Modelling the epidemiology of hepatitis B in New Zealand,, J. Theor. Biol., 269 (2011), 266. doi: 10.1016/j.jtbi.2010.10.028.

[17]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945.

[18]

H. R. Thieme, Persistence under relaxed point-dissipativity(with application to an endemic model),, SIAM J. Appl. Math., 24 (1993), 407. doi: 10.1137/0524026.

[19]

H. R. Thieme, Semiflows generated by Lipschitz perturbation of non-densely defined operators,, Diff. Integr. Equs., 3 (1990), 1035.

[20]

S. Thornley, C. Bullen and M. Roberts, Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy,, J. Theor. Biol., 254 (2008), 599. doi: 10.1016/j.jtbi.2008.06.022.

[21]

S. X. Zhang and Y. C. Zhou, The analysis and application of an HBV model,, Appl. Math. Model., 36 (2012), 1302. doi: 10.1016/j.apm.2011.07.087.

[22]

X. Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1.

[23]

S. Zhao, Z. Xu and Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China,, Int. J. epidemiol., 29 (1994), 744. doi: 10.1093/ije/29.4.744.

[24]

L. Zou, S. G. Ruan and W. N. Zhang, An age-structured model for the transmission dynamics of hepatitis B,, SIAM J. Appl. Math., 70 (2010), 3121. doi: 10.1137/090777645.

[25]

L. Zou, W. N. Zhang and S. G. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China,, J. Theor. Biol., 262 (2010), 330. doi: 10.1016/j.jtbi.2009.09.035.

[1]

Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1291-1313. doi: 10.3934/mbe.2018060

[2]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[3]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[4]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[5]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[6]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[7]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[8]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[9]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[10]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[11]

Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227

[12]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[13]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[14]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[15]

Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022

[16]

Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23

[17]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[18]

Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1045-1065. doi: 10.3934/mbe.2013.10.1045

[19]

Jean-Baptiste Burie, Arnaud Ducrot, Abdoul Aziz Mbengue. Asymptotic behaviour of an age and infection age structured model for the propagation of fungal diseases in plants. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2879-2905. doi: 10.3934/dcdsb.2017155

[20]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]