2016, 21(3): 919-941. doi: 10.3934/dcdsb.2016.21.919

On the uniqueness of weak solution for the 2-D Ericksen--Leslie system

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

3. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  October 2014 Revised  September 2015 Published  January 2016

In this paper, we prove the uniqueness of weak solutions to the two dimensional full Ericksen-Leslie system with the Leslie stress and general Ericksen stress under the physical constrains on the Leslie coefficients. This question remains unknown even in the case when the Leslie stress is vanishing. The main technique used in the proof is Littlewood-Paley analysis performed in a very delicate way. Different from the earlier result in [28], we introduce a new metric and explore the algebraic structure of the molecular field.
Citation: Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919
References:
[1]

J. M. Bony, Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles non linéaires,, Ann. Ecole Norm. Sup., 14 (1981), 209.

[2]

J. Y. Chemin, Perfect Incompressible Fluids,, Oxford Lecture series in Mathematics and its Applications, (1998).

[3]

J. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 23. doi: 10.1122/1.548883.

[4]

M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations,, part II, (1998). doi: 10.1007/978-3-662-06218-0.

[5]

M.-C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Differential Equations, 40 (2011), 15. doi: 10.1007/s00526-010-0331-5.

[6]

M.-C. Hong and Z.-P. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbbR^2$,, Adv. Math., 231 (2012), 1364. doi: 10.1016/j.aim.2012.06.009.

[7]

M.-C. Hong, J.-K. Li and Z.-P. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in $\mathbbR^3$,, Comm. Partial Differential Equations, 39 (2014), 1284. doi: 10.1080/03605302.2013.871026.

[8]

J.-R. Huang, F.-H. Lin and C.-Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbbR^2$,, Comm. Math. Phys., 331 (2014), 805. doi: 10.1007/s00220-014-2079-9.

[9]

T. Huang and C.-Y. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Partial Differential Equations, 37 (2012), 875. doi: 10.1080/03605302.2012.659366.

[10]

F. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357. doi: 10.1093/qjmam/19.3.357.

[11]

F. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28 (1968), 265. doi: 10.1007/BF00251810.

[12]

F. Leslie, Theory of flow phenomena in liquid crystals,, The Theory of Liquid Crystals, 4 (1979), 1. doi: 10.1016/B978-0-12-025004-2.50008-9.

[13]

J.-K. Li, E. Titi and Z.-P. Xin, On the uniqueness of weak solutions to weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbbR^2$,, , ().

[14]

F.-H. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605.

[15]

F.-H. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x.

[16]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503.

[17]

F.-H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dynam. Systems, 2 (1996), 1.

[18]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102.

[19]

F.-H. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chin. Ann. Math. Ser. B, 31 (2010), 921. doi: 10.1007/s11401-010-0612-5.

[20]

O. Parodi, Stress tensor for a nematic liquid crystal,, Journal de Physique, 31 (1970), 581.

[21]

M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces,, Comm. Math. Helv., 60 (1985), 558. doi: 10.1007/BF02567432.

[22]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Ration. Mech. Anal., 200 (2011), 1. doi: 10.1007/s00205-010-0343-5.

[23]

C. Wang and X. Xu, On the rigidity of nematic liquid crystal flow on $S^2$,, Jounal of Functional Analysis, 266 (2014), 5360. doi: 10.1016/j.jfa.2014.02.023.

[24]

W. Wang, P. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen- Leslie equation,, Comm. Pure Appl. Math., 68 (2015), 1326. doi: 10.1002/cpa.21549.

[25]

W. Wang, P. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 210 (2013), 837. doi: 10.1007/s00205-013-0659-z.

[26]

M. Wang and W.-D. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Calc. Var. Partial Differential Equations, 51 (2014), 915. doi: 10.1007/s00526-013-0700-y.

[27]

H. Wu, X. Xu and C. Liu, On the general Ericksen Leslie system: Parodis relation, well-posedness and stability,, Arch. Ration. Mech. Anal., 208 (2013), 59. doi: 10.1007/s00205-012-0588-2.

[28]

X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows,, J. Differential Equations, 252 (2012), 1169. doi: 10.1016/j.jde.2011.08.028.

show all references

References:
[1]

J. M. Bony, Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles non linéaires,, Ann. Ecole Norm. Sup., 14 (1981), 209.

[2]

J. Y. Chemin, Perfect Incompressible Fluids,, Oxford Lecture series in Mathematics and its Applications, (1998).

[3]

J. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 23. doi: 10.1122/1.548883.

[4]

M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations,, part II, (1998). doi: 10.1007/978-3-662-06218-0.

[5]

M.-C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Differential Equations, 40 (2011), 15. doi: 10.1007/s00526-010-0331-5.

[6]

M.-C. Hong and Z.-P. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in $\mathbbR^2$,, Adv. Math., 231 (2012), 1364. doi: 10.1016/j.aim.2012.06.009.

[7]

M.-C. Hong, J.-K. Li and Z.-P. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in $\mathbbR^3$,, Comm. Partial Differential Equations, 39 (2014), 1284. doi: 10.1080/03605302.2013.871026.

[8]

J.-R. Huang, F.-H. Lin and C.-Y. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbbR^2$,, Comm. Math. Phys., 331 (2014), 805. doi: 10.1007/s00220-014-2079-9.

[9]

T. Huang and C.-Y. Wang, Blow up criterion for nematic liquid crystal flows,, Comm. Partial Differential Equations, 37 (2012), 875. doi: 10.1080/03605302.2012.659366.

[10]

F. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357. doi: 10.1093/qjmam/19.3.357.

[11]

F. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28 (1968), 265. doi: 10.1007/BF00251810.

[12]

F. Leslie, Theory of flow phenomena in liquid crystals,, The Theory of Liquid Crystals, 4 (1979), 1. doi: 10.1016/B978-0-12-025004-2.50008-9.

[13]

J.-K. Li, E. Titi and Z.-P. Xin, On the uniqueness of weak solutions to weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbbR^2$,, , ().

[14]

F.-H. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605.

[15]

F.-H. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x.

[16]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503.

[17]

F.-H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dynam. Systems, 2 (1996), 1.

[18]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102.

[19]

F.-H. Lin and C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals,, Chin. Ann. Math. Ser. B, 31 (2010), 921. doi: 10.1007/s11401-010-0612-5.

[20]

O. Parodi, Stress tensor for a nematic liquid crystal,, Journal de Physique, 31 (1970), 581.

[21]

M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces,, Comm. Math. Helv., 60 (1985), 558. doi: 10.1007/BF02567432.

[22]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Ration. Mech. Anal., 200 (2011), 1. doi: 10.1007/s00205-010-0343-5.

[23]

C. Wang and X. Xu, On the rigidity of nematic liquid crystal flow on $S^2$,, Jounal of Functional Analysis, 266 (2014), 5360. doi: 10.1016/j.jfa.2014.02.023.

[24]

W. Wang, P. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen- Leslie equation,, Comm. Pure Appl. Math., 68 (2015), 1326. doi: 10.1002/cpa.21549.

[25]

W. Wang, P. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system,, Arch. Ration. Mech. Anal., 210 (2013), 837. doi: 10.1007/s00205-013-0659-z.

[26]

M. Wang and W.-D. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system,, Calc. Var. Partial Differential Equations, 51 (2014), 915. doi: 10.1007/s00526-013-0700-y.

[27]

H. Wu, X. Xu and C. Liu, On the general Ericksen Leslie system: Parodis relation, well-posedness and stability,, Arch. Ration. Mech. Anal., 208 (2013), 59. doi: 10.1007/s00205-012-0588-2.

[28]

X. Xu and Z. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows,, J. Differential Equations, 252 (2012), 1169. doi: 10.1016/j.jde.2011.08.028.

[1]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[2]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[3]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[4]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[5]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[6]

Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345

[7]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[8]

Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic & Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015

[9]

Thi-Bich-Ngoc Mac. Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3013-3027. doi: 10.3934/dcdsb.2015.20.3013

[10]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[11]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[12]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[13]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019064

[14]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[15]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[16]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[17]

Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482

[18]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[19]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[20]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]