# American Institute of Mathematical Sciences

2016, 21(5): 1421-1434. doi: 10.3934/dcdsb.2016003

## Free boundary problem of Barenblatt equation in stochastic control

 1 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China 2 School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

Received  January 2014 Revised  March 2014 Published  April 2016

The following type of parabolic Barenblatt equations
min {$\partial_t V - \mathcal{L}_1 V, \partial_t V-\mathcal{L}_2 V$} = 0
is studied, where $\mathcal{L}_1$ and $\mathcal{L}_2$ are different elliptic operators of second order. The (unknown) free boundary of the problem is a divisional curve, which is the optimal insured boundary in our stochastic control problem. It will be proved that the free boundary is a differentiable curve.
To the best of our knowledge, this is the first result on free boundary for Barenblatt Equation. We will establish the model and verification theorem by the use of stochastic analysis. The existence of classical solution to the HJB equation and the differentiability of free boundary are obtained by PDE techniques.
Citation: Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003
##### References:
 [1] A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964). [2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. [3] S. Kamin, L. A. Peletier and J. L. Vazquez, On the Barenblatt equation of elasto-plastic filtration,, Indiana Math. J., 40 (1991), 1333. doi: 10.1512/iumj.1991.40.40060. [4] D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation,, Appl Math Optim., 47 (2003), 253. doi: 10.1007/s00245-003-0764-8. [5] A. Kolesnichenko and G. Shopina, Valuation of Portfolios Under Uncertain Volatility: Black-Scholes Barenblatt Equations and the Static Hedging,, {Technical report, (2007). [6] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain,, Izv. Akad. Nayk SSSR, 47 (1983), 75. [7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1967). [8] G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996). doi: 10.1142/3302. [9] H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications,, Springer-Verlag, (2009). doi: 10.1007/978-3-540-89500-8. [10] J. Rochet and S. Villeneuve, Liquidity management and coporate demand for hedging and insurance,, J. Finan. Intermediation, 20 (2011), 303. [11] S. E. Shreve, Stochastic Calculus for Finance II,, Springer, (2004). [12] T. Vargiolu, Existence, Uniqueness and Smoothness for the Black-Scholes-Barenblatt Equation,, Technical Report of the Department of Pure and Appl. Math. of the University of Padava, (2001).

show all references

##### References:
 [1] A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964). [2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. [3] S. Kamin, L. A. Peletier and J. L. Vazquez, On the Barenblatt equation of elasto-plastic filtration,, Indiana Math. J., 40 (1991), 1333. doi: 10.1512/iumj.1991.40.40060. [4] D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation,, Appl Math Optim., 47 (2003), 253. doi: 10.1007/s00245-003-0764-8. [5] A. Kolesnichenko and G. Shopina, Valuation of Portfolios Under Uncertain Volatility: Black-Scholes Barenblatt Equations and the Static Hedging,, {Technical report, (2007). [6] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain,, Izv. Akad. Nayk SSSR, 47 (1983), 75. [7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1967). [8] G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996). doi: 10.1142/3302. [9] H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications,, Springer-Verlag, (2009). doi: 10.1007/978-3-540-89500-8. [10] J. Rochet and S. Villeneuve, Liquidity management and coporate demand for hedging and insurance,, J. Finan. Intermediation, 20 (2011), 303. [11] S. E. Shreve, Stochastic Calculus for Finance II,, Springer, (2004). [12] T. Vargiolu, Existence, Uniqueness and Smoothness for the Black-Scholes-Barenblatt Equation,, Technical Report of the Department of Pure and Appl. Math. of the University of Padava, (2001).
 [1] Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651 [2] Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271 [3] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [4] Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 [5] Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 [6] Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605 [7] Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105 [8] Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 [9] Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35 [10] Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021 [11] Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569 [12] Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 [13] Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017 [14] Lorena Bociu, Lucas Castle, Kristina Martin, Daniel Toundykov. Optimal control in a free boundary fluid-elasticity interaction. Conference Publications, 2015, 2015 (special) : 122-131. doi: 10.3934/proc.2015.0122 [15] Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control & Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005 [16] Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783 [17] Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 [18] Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 [19] Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations & Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21 [20] William G. Litvinov. Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions. Journal of Industrial & Management Optimization, 2011, 7 (2) : 291-315. doi: 10.3934/jimo.2011.7.291

2017 Impact Factor: 0.972