# American Institute of Mathematical Sciences

July  2016, 21(5): 1507-1523. doi: 10.3934/dcdsb.2016009

## Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities

 1 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China, China 2 Department of Mathematics, South China Normal University, Guangzhou, Guangdong 510631

Received  March 2013 Revised  September 2013 Published  April 2016

This paper is concerned with a coupled Navier-Stokes/Allen-Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain $\Omega\subset\mathbb R^N$($N=2,3$). We establish a criterion for possible break down of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of gradient of phase field variable in 2D. In 3D, the temporal integral of the square of maximum norm of velocity is also needed. Here, we suppose the initial density function $\rho_0$ has a positive lower bound.
Citation: Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009
##### References:
 [1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities,, Arch. Ration. Mech. Anal., 194 (2009), 463. doi: 10.1007/s00205-008-0160-2. Google Scholar [2] H. Abels and E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids,, Indiana Univ. Math. J., 57 (2008), 659. doi: 10.1512/iumj.2008.57.3391. Google Scholar [3] D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics,, in Annual review of fluid mechanics, (1998), 139. doi: 10.1146/annurev.fluid.30.1.139. Google Scholar [4] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation,, Asymptot. Anal., 20 (1999), 175. Google Scholar [5] S. C. Brenner, Korn's inequalities for piecewise $H^1$ vector fields,, Mathematics of Computation, 73 (2004), 1067. doi: 10.1090/S0025-5718-03-01579-5. Google Scholar [6] J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equation,, Comm. Math. Phys., 94 (1984), 61. doi: 10.1007/BF01212349. Google Scholar [7] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics,, Springer-Verlag, (1976). Google Scholar [8] S. Ding, Y. Li and W. Luo, Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1-D,, J. Math Fluid Mech., 15 (2013), 335. doi: 10.1007/s00021-012-0104-3. Google Scholar [9] J. J. Feng, C. Liu, J. Shen and P. Yue, An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: Advantages and challenges,, in Modeling of soft matter, (2005), 1. doi: 10.1007/0-387-32153-5_1. Google Scholar [10] E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Ayalysis of a phase-field model for two-phase compressible fluids,, Math. Meth. Appl. Sci., 31 (2008), 1972. Google Scholar [11] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Linearized Steady Problems, Vol. 1,, in: Springer Tracts in Natural Philosophy, (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar [12] C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. I. H. Poincaré-AN, 27 (2010), 401. doi: 10.1016/j.anihpc.2009.11.013. Google Scholar [13] H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, SIAM J. Math. Anal., 37 (2006), 1417. doi: 10.1137/S0036141004442197. Google Scholar [14] Y. Li, S. Ding and M. Huang, Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with Different Densities,, preprint., (). Google Scholar [15] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, Proc. R. Soc. Lond. A, 454 (1998), 2617. doi: 10.1098/rspa.1998.0273. Google Scholar [16] G. Ponce, Remarks on a paper: "Remarks on the breakdown of smooth solutions for the 3-D Euler equations",, Comm. Math. Phys., 98 (1985), 349. Google Scholar [17] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187. Google Scholar [18] M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437. doi: 10.1002/cpa.3160410404. Google Scholar [19] X. Xu, L. Zhao and C. Liu, Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations,, SIAM J. Math. Anal., 41 (2010), 2246. doi: 10.1137/090754698. Google Scholar [20] X. Yang, J. J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method,, Journal of Computational Physics, 218 (2006), 417. doi: 10.1016/j.jcp.2006.02.021. Google Scholar [21] L. Zhao, B. Guo and H. Huang, Vanishing visosity limit for a coupled Navier-Stokes/Allen-Cahn system,, J. Math. Anal. Appl., 384 (2011), 232. doi: 10.1016/j.jmaa.2011.05.042. Google Scholar

show all references

##### References:
 [1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities,, Arch. Ration. Mech. Anal., 194 (2009), 463. doi: 10.1007/s00205-008-0160-2. Google Scholar [2] H. Abels and E. Feireisl, On a diffuse interface model for a two-phase flow of compressible viscous fluids,, Indiana Univ. Math. J., 57 (2008), 659. doi: 10.1512/iumj.2008.57.3391. Google Scholar [3] D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics,, in Annual review of fluid mechanics, (1998), 139. doi: 10.1146/annurev.fluid.30.1.139. Google Scholar [4] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation,, Asymptot. Anal., 20 (1999), 175. Google Scholar [5] S. C. Brenner, Korn's inequalities for piecewise $H^1$ vector fields,, Mathematics of Computation, 73 (2004), 1067. doi: 10.1090/S0025-5718-03-01579-5. Google Scholar [6] J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equation,, Comm. Math. Phys., 94 (1984), 61. doi: 10.1007/BF01212349. Google Scholar [7] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics,, Springer-Verlag, (1976). Google Scholar [8] S. Ding, Y. Li and W. Luo, Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1-D,, J. Math Fluid Mech., 15 (2013), 335. doi: 10.1007/s00021-012-0104-3. Google Scholar [9] J. J. Feng, C. Liu, J. Shen and P. Yue, An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: Advantages and challenges,, in Modeling of soft matter, (2005), 1. doi: 10.1007/0-387-32153-5_1. Google Scholar [10] E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Ayalysis of a phase-field model for two-phase compressible fluids,, Math. Meth. Appl. Sci., 31 (2008), 1972. Google Scholar [11] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Linearized Steady Problems, Vol. 1,, in: Springer Tracts in Natural Philosophy, (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar [12] C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,, Ann. I. H. Poincaré-AN, 27 (2010), 401. doi: 10.1016/j.anihpc.2009.11.013. Google Scholar [13] H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, SIAM J. Math. Anal., 37 (2006), 1417. doi: 10.1137/S0036141004442197. Google Scholar [14] Y. Li, S. Ding and M. Huang, Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with Different Densities,, preprint., (). Google Scholar [15] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions,, Proc. R. Soc. Lond. A, 454 (1998), 2617. doi: 10.1098/rspa.1998.0273. Google Scholar [16] G. Ponce, Remarks on a paper: "Remarks on the breakdown of smooth solutions for the 3-D Euler equations",, Comm. Math. Phys., 98 (1985), 349. Google Scholar [17] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187. Google Scholar [18] M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437. doi: 10.1002/cpa.3160410404. Google Scholar [19] X. Xu, L. Zhao and C. Liu, Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations,, SIAM J. Math. Anal., 41 (2010), 2246. doi: 10.1137/090754698. Google Scholar [20] X. Yang, J. J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method,, Journal of Computational Physics, 218 (2006), 417. doi: 10.1016/j.jcp.2006.02.021. Google Scholar [21] L. Zhao, B. Guo and H. Huang, Vanishing visosity limit for a coupled Navier-Stokes/Allen-Cahn system,, J. Math. Anal. Appl., 384 (2011), 232. doi: 10.1016/j.jmaa.2011.05.042. Google Scholar
 [1] Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 [2] Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319 [3] Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537 [4] Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 [5] Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167 [6] Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95 [7] Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703 [8] Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299 [9] Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 [10] Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127 [11] Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669 [12] Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308 [13] C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 [14] Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 [15] Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923 [16] Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333 [17] Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318 [18] Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015 [19] Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679 [20] Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

2018 Impact Factor: 1.008