September  2016, 21(7): 2193-2210. doi: 10.3934/dcdsb.2016043

Ergodicity and loss of capacity for a random family of concave maps

1. 

Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413

2. 

Department of Mathematics, Pomona College, 610 N. College Ave., Claremont, CA 91711, United States

Received  July 2015 Revised  March 2016 Published  August 2016

Random fluctuations of an environment are common in ecological and economical settings. We consider a family of concave quadratic polynomials on the unit interval that model a self-limiting growth behavior. The maps are parametrized by an independent, identically distributed random parameter. We show the existence of a unique invariant ergodic measure of the resulting random dynamical system. Moreover, there is an attenuation of the mean of the state variable compared to the constant environment with the averaged parameter.
Citation: Peter Hinow, Ami Radunskaya. Ergodicity and loss of capacity for a random family of concave maps. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2193-2210. doi: 10.3934/dcdsb.2016043
References:
[1]

L. A. Adamic and B. A. Huberman, Power-law distribution of the world wide web,, Science, 287 (2000). Google Scholar

[2]

K. B. Athreya and J. Dai, Random logistic maps,, J. Theoret. Probab., 13 (2000), 595. doi: 10.1023/A:1007828804691. Google Scholar

[3]

K. B. Athreya and J. Dai, On the nonuniqueness of the invariant probability for i.i.d. random logistic maps,, Ann. Probab., 30 (2002), 437. doi: 10.1214/aop/1020107774. Google Scholar

[4]

R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations,, Fishery Invest., 19 (1957). Google Scholar

[5]

T. Bezandry, T. Diagana and S. Elaydi, On the stochastic Beverton-Holt equation with survival rates,, J. Difference Equ. Appl., 14 (2008), 175. doi: 10.1080/10236190701565610. Google Scholar

[6]

R. Bhattacharya and M. Majumdar, Random Dynamical Systems,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511618628. Google Scholar

[7]

R. N. Bhattacharya and B. V. Rao, Random iterations of two quadratic maps,, in Stochastic Processes. A Festschrift in honor of Gopinath Kallianpur. (ed. S. Cambanis et al.), (1993), 13. Google Scholar

[8]

O. Biham, O. Malcai, M. Levy and S. Solomon, Generic emergence of power law distributions and Lévy-Stable intermittent fluctuations in discrete logistic systems,, Phys. Rev. E, 58 (1998), 1352. Google Scholar

[9]

A. Blank and S. Solomon, Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components),, Physica A, 287 (2000), 279. doi: 10.1016/S0378-4371(00)00464-7. Google Scholar

[10]

M. Bohner and H. Warth, The Beverton-Holt dynamic equation,, Appl. Anal., 86 (2007), 1007. doi: 10.1080/00036810701474140. Google Scholar

[11]

J. M. Cushing and S. M. Henson, Global dynamics of some periodically forced, monotone difference equations,, J. Difference Equ. Appl., 7 (2001), 859. doi: 10.1080/10236190108808308. Google Scholar

[12]

J. M. Cushing and S. M. Henson, A periodically forced Beverton-Holt equation,, J. Difference Equ. Appl., 8 (2002), 1119. doi: 10.1080/1023619021000053980. Google Scholar

[13]

G. DaPrato, An Introduction to Infinite-Dimensional Analysis,, Springer Verlag, (2006). doi: 10.1007/3-540-29021-4. Google Scholar

[14]

P. Diaconis and D. Freedman, Iterated random functions,, SIAM Review., 41 (1999), 45. doi: 10.1137/S0036144598338446. Google Scholar

[15]

P. Dubins and D. Freedman, Invariant probabilities for certain Markov processes,, Ann. Math. Statist., 37 (1966), 837. doi: 10.1214/aoms/1177699364. Google Scholar

[16]

C. Haskell and R. J. Sacker, The stochastic Beverton-Holt equation and the M. Neubert conjecture,, J. Dynam. Diff. Eq., 17 (2005), 825. doi: 10.1007/s10884-005-8273-x. Google Scholar

[17]

S. Kakutani, Random ergodic theorems and Markoff processes with a stable distribution,, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, (1951), 247. Google Scholar

[18]

Y. Kifer, Ergodic Theory of Random Transformations,, Birkhäuser, (1986). doi: 10.1007/978-1-4684-9175-3. Google Scholar

[19]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise,, 2nd edition, (1994). doi: 10.1007/978-1-4612-4286-4. Google Scholar

[20]

Y. Louzoun, S. Solomon, H. Atlan and I. R. Cohen, Proliferation and competition in discrete biological systems,, Bull. Math. Biol., 65 (2003), 375. Google Scholar

[21]

M. Mackey and J. G. Milton, A deterministic approach to survival statistics,, J. Math. Biol., 28 (1990), 33. doi: 10.1007/BF00171517. Google Scholar

[22]

S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability,, 2nd edition, (2009). doi: 10.1017/CBO9780511626630. Google Scholar

[23]

E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators,, Cambridge University Press, (1984). doi: 10.1017/CBO9780511526237. Google Scholar

[24]

L. Pástor, E. Kisdi and G. Meszéna, Jensen's inequality and optimal life history strategies in stochastic environments,, Trends. Ecol. Evol., 15 (2000), 117. Google Scholar

[25]

S. Solomon and P. Richmond, Power laws of wealth, market order volumes and market returns,, Physica A, 299 (2001), 188. Google Scholar

[26]

S. Ulam and J. von Neumann, Random ergodic theorems (Abstract # 165),, Bull. Amer. Math. Soc., 51 (1945). Google Scholar

show all references

References:
[1]

L. A. Adamic and B. A. Huberman, Power-law distribution of the world wide web,, Science, 287 (2000). Google Scholar

[2]

K. B. Athreya and J. Dai, Random logistic maps,, J. Theoret. Probab., 13 (2000), 595. doi: 10.1023/A:1007828804691. Google Scholar

[3]

K. B. Athreya and J. Dai, On the nonuniqueness of the invariant probability for i.i.d. random logistic maps,, Ann. Probab., 30 (2002), 437. doi: 10.1214/aop/1020107774. Google Scholar

[4]

R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations,, Fishery Invest., 19 (1957). Google Scholar

[5]

T. Bezandry, T. Diagana and S. Elaydi, On the stochastic Beverton-Holt equation with survival rates,, J. Difference Equ. Appl., 14 (2008), 175. doi: 10.1080/10236190701565610. Google Scholar

[6]

R. Bhattacharya and M. Majumdar, Random Dynamical Systems,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511618628. Google Scholar

[7]

R. N. Bhattacharya and B. V. Rao, Random iterations of two quadratic maps,, in Stochastic Processes. A Festschrift in honor of Gopinath Kallianpur. (ed. S. Cambanis et al.), (1993), 13. Google Scholar

[8]

O. Biham, O. Malcai, M. Levy and S. Solomon, Generic emergence of power law distributions and Lévy-Stable intermittent fluctuations in discrete logistic systems,, Phys. Rev. E, 58 (1998), 1352. Google Scholar

[9]

A. Blank and S. Solomon, Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components),, Physica A, 287 (2000), 279. doi: 10.1016/S0378-4371(00)00464-7. Google Scholar

[10]

M. Bohner and H. Warth, The Beverton-Holt dynamic equation,, Appl. Anal., 86 (2007), 1007. doi: 10.1080/00036810701474140. Google Scholar

[11]

J. M. Cushing and S. M. Henson, Global dynamics of some periodically forced, monotone difference equations,, J. Difference Equ. Appl., 7 (2001), 859. doi: 10.1080/10236190108808308. Google Scholar

[12]

J. M. Cushing and S. M. Henson, A periodically forced Beverton-Holt equation,, J. Difference Equ. Appl., 8 (2002), 1119. doi: 10.1080/1023619021000053980. Google Scholar

[13]

G. DaPrato, An Introduction to Infinite-Dimensional Analysis,, Springer Verlag, (2006). doi: 10.1007/3-540-29021-4. Google Scholar

[14]

P. Diaconis and D. Freedman, Iterated random functions,, SIAM Review., 41 (1999), 45. doi: 10.1137/S0036144598338446. Google Scholar

[15]

P. Dubins and D. Freedman, Invariant probabilities for certain Markov processes,, Ann. Math. Statist., 37 (1966), 837. doi: 10.1214/aoms/1177699364. Google Scholar

[16]

C. Haskell and R. J. Sacker, The stochastic Beverton-Holt equation and the M. Neubert conjecture,, J. Dynam. Diff. Eq., 17 (2005), 825. doi: 10.1007/s10884-005-8273-x. Google Scholar

[17]

S. Kakutani, Random ergodic theorems and Markoff processes with a stable distribution,, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, (1951), 247. Google Scholar

[18]

Y. Kifer, Ergodic Theory of Random Transformations,, Birkhäuser, (1986). doi: 10.1007/978-1-4684-9175-3. Google Scholar

[19]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise,, 2nd edition, (1994). doi: 10.1007/978-1-4612-4286-4. Google Scholar

[20]

Y. Louzoun, S. Solomon, H. Atlan and I. R. Cohen, Proliferation and competition in discrete biological systems,, Bull. Math. Biol., 65 (2003), 375. Google Scholar

[21]

M. Mackey and J. G. Milton, A deterministic approach to survival statistics,, J. Math. Biol., 28 (1990), 33. doi: 10.1007/BF00171517. Google Scholar

[22]

S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability,, 2nd edition, (2009). doi: 10.1017/CBO9780511626630. Google Scholar

[23]

E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators,, Cambridge University Press, (1984). doi: 10.1017/CBO9780511526237. Google Scholar

[24]

L. Pástor, E. Kisdi and G. Meszéna, Jensen's inequality and optimal life history strategies in stochastic environments,, Trends. Ecol. Evol., 15 (2000), 117. Google Scholar

[25]

S. Solomon and P. Richmond, Power laws of wealth, market order volumes and market returns,, Physica A, 299 (2001), 188. Google Scholar

[26]

S. Ulam and J. von Neumann, Random ergodic theorems (Abstract # 165),, Bull. Amer. Math. Soc., 51 (1945). Google Scholar

[1]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[2]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[3]

Nicolai Haydn, Sandro Vaienti. The limiting distribution and error terms for return times of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 589-616. doi: 10.3934/dcds.2004.10.589

[4]

Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43

[5]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[6]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[7]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[8]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[9]

Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2585-2611. doi: 10.3934/dcds.2016.36.2585

[10]

Oliver Jenkinson. Every ergodic measure is uniquely maximizing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 383-392. doi: 10.3934/dcds.2006.16.383

[11]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[12]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[13]

Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635

[14]

Yuri Kifer. Computations in dynamical systems via random perturbations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 457-476. doi: 10.3934/dcds.1997.3.457

[15]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[16]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[17]

Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855

[18]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[19]

T. Jäger. Neuronal coding of pacemaker neurons -- A random dynamical systems approach. Communications on Pure & Applied Analysis, 2011, 10 (3) : 995-1009. doi: 10.3934/cpaa.2011.10.995

[20]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]