2016, 21(8): 2567-2585. doi: 10.3934/dcdsb.2016061

A reaction diffusion system modeling virus dynamics and CTLs response with chemotaxis

1. 

Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China

2. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 3k7, Canada

Received  October 2015 Revised  December 2015 Published  September 2016

In this paper, we study the effect of chemotactic movement of CTLs on HIV-1 infection dynamics by a reaction diffusion system with chemotaxis. Choosing a typical chemosensitive function, we find that chemoattractive movement of CTLs due to HIV infection does not change stability of a positive steady state of the model, meaning that the stability/instability of the model remains the same as in the model without spatial effect. However, chemorepulsion movement of CTLs can destabilize the positive steady state as the strength of the chemotactic sensitivity increases. In this case, Turing instability occurs, which may result in Hopf bifurcation or steady state bifurcation, and spatial inhomogeneous pattern forms.
Citation: Xiulan Lai, Xingfu Zou. A reaction diffusion system modeling virus dynamics and CTLs response with chemotaxis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2567-2585. doi: 10.3934/dcdsb.2016061
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).

[2]

H. Amann, Dynamcial theory of quasilinear parabolic equations III: Global existence,, Math. Z., 202 (1989), 219. doi: 10.1007/BF01215256.

[3]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in: Schmeisser H.J., 133 (1993), 9. doi: 10.1007/978-3-663-11336-2_1.

[4]

D. M. Brainard et al, Migration of antigen-specific T cells away from CXCR4-binding Human Immunodeficiency Virus Type 1 gp120,, J. Virol., 78 (2004), 5184.

[5]

D. M. Brainard et al, Decreased CXCR$3^+$ CD8 T cells in Advanced Human Immunodeficiency Virus infection suggest that a homing defect contributes to cytotoxic T-lymphocyte dysfunction,, J. Virol., 81 (2007), 8439.

[6]

M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,, Math. Biosci., 200 (2006), 1. doi: 10.1016/j.mbs.2005.12.006.

[7]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Advances in Appl. Math., 26 (2001), 280. doi: 10.1006/aama.2001.0721.

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[9]

Y. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543. doi: 10.1007/s00285-010-0346-8.

[10]

J. D. Murray, Mathematical Biology I: An Introduction, In: Interdisciplinary Applied Mathematics, Vol. 18,, Springer New York, (2002).

[11]

J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, In: Interdisciplinary Applied Mathematics, Vol. 18,, Springer New York, (2003).

[12]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, Canadian Applied Mathematics Quarterly, 10 (2002), 501.

[13]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).

[14]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal dependent sensivity,, Math. Nachr., 283 (2010), 1664. doi: 10.1002/mana.200810838.

[15]

D. Wodarz, Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology, Interdisciplinary Applied Mathematics, vol. 32,, Springer Berlin, (2007). doi: 10.1007/978-0-387-68733-9.

[16]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding,, Nonlinear Analysis, 59 (2004), 1293. doi: 10.1016/S0362-546X(04)00327-X.

[17]

D. Wrzosek, Volume filling effect in modeling chemotaxis,, Math. Model. Nat. Phenom., 5 (2010), 123. doi: 10.1051/mmnp/20105106.

[18]

F. Vianello, I. T. Olszak and M. C. Poznansky, Fugetaxis: Active movement of leukocytes away from a chemokinetic agent,, J. Mol. Med., 83 (2005), 752. doi: 10.1007/s00109-005-0675-z.

[19]

P. Yu, Closed-form conditions of bifurcation points for general differential equations,, Int. J. Bifurcation Chaos Appl. Sci. Eng., 15 (2005), 1467. doi: 10.1142/S0218127405012582.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).

[2]

H. Amann, Dynamcial theory of quasilinear parabolic equations III: Global existence,, Math. Z., 202 (1989), 219. doi: 10.1007/BF01215256.

[3]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems,, in: Schmeisser H.J., 133 (1993), 9. doi: 10.1007/978-3-663-11336-2_1.

[4]

D. M. Brainard et al, Migration of antigen-specific T cells away from CXCR4-binding Human Immunodeficiency Virus Type 1 gp120,, J. Virol., 78 (2004), 5184.

[5]

D. M. Brainard et al, Decreased CXCR$3^+$ CD8 T cells in Advanced Human Immunodeficiency Virus infection suggest that a homing defect contributes to cytotoxic T-lymphocyte dysfunction,, J. Virol., 81 (2007), 8439.

[6]

M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,, Math. Biosci., 200 (2006), 1. doi: 10.1016/j.mbs.2005.12.006.

[7]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Advances in Appl. Math., 26 (2001), 280. doi: 10.1006/aama.2001.0721.

[8]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[9]

Y. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543. doi: 10.1007/s00285-010-0346-8.

[10]

J. D. Murray, Mathematical Biology I: An Introduction, In: Interdisciplinary Applied Mathematics, Vol. 18,, Springer New York, (2002).

[11]

J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, In: Interdisciplinary Applied Mathematics, Vol. 18,, Springer New York, (2003).

[12]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, Canadian Applied Mathematics Quarterly, 10 (2002), 501.

[13]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).

[14]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal dependent sensivity,, Math. Nachr., 283 (2010), 1664. doi: 10.1002/mana.200810838.

[15]

D. Wodarz, Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology, Interdisciplinary Applied Mathematics, vol. 32,, Springer Berlin, (2007). doi: 10.1007/978-0-387-68733-9.

[16]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding,, Nonlinear Analysis, 59 (2004), 1293. doi: 10.1016/S0362-546X(04)00327-X.

[17]

D. Wrzosek, Volume filling effect in modeling chemotaxis,, Math. Model. Nat. Phenom., 5 (2010), 123. doi: 10.1051/mmnp/20105106.

[18]

F. Vianello, I. T. Olszak and M. C. Poznansky, Fugetaxis: Active movement of leukocytes away from a chemokinetic agent,, J. Mol. Med., 83 (2005), 752. doi: 10.1007/s00109-005-0675-z.

[19]

P. Yu, Closed-form conditions of bifurcation points for general differential equations,, Int. J. Bifurcation Chaos Appl. Sci. Eng., 15 (2005), 1467. doi: 10.1142/S0218127405012582.

[1]

Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229

[2]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[3]

Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences & Engineering, 2008, 5 (3) : 485-504. doi: 10.3934/mbe.2008.5.485

[4]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[5]

Huiyan Zhu, Xingfu Zou. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 511-524. doi: 10.3934/dcdsb.2009.12.511

[6]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[7]

Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135-157. doi: 10.3934/mbe.2016.13.135

[8]

Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181

[9]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[10]

Jie Lou, Tommaso Ruggeri, Claudio Tebaldi. Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences & Engineering, 2006, 3 (2) : 313-324. doi: 10.3934/mbe.2006.3.313

[11]

Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1783-1800. doi: 10.3934/dcdsb.2014.19.1783

[12]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[13]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[14]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[15]

Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959-977. doi: 10.3934/mbe.2013.10.959

[16]

Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843

[17]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[18]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[19]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[20]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]