October  2016, 21(8): 2867-2881. doi: 10.3934/dcdsb.2016077

Global dynamics of three species omnivory models with Lotka-Volterra interaction

1. 

Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

3. 

Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan

Received  June 2016 Revised  July 2016 Published  September 2016

In this work, we consider the community of three species food web model with Lotka-Volterra type predator-prey interaction. In the absence of other species, each species follows the traditional logistical growth model and the top predator is an omnivore which is defined as feeding on the other two species. It can be seen as a model with one basal resource and two generalist predators, and pairwise interactions of all species are predator-prey type. It is well known that the omnivory module blends the attributes of several well-studied community modules, such as food chains (food chain models), exploitative competition (two predators-one prey models), and apparent competition (one predator-two preys models). With a mild biological restriction, we completely classify all parameters. All local dynamics and most parts of global dynamics are established corresponding to the classification. Moreover, the whole system is uniformly persistent when the unique coexistence appears. Finally, we conclude by discussing the strategy of inferior species to survive and the mechanism of uniform persistence for the three species ecosystem.
Citation: Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077
References:
[1]

G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems,, Proceedings of the American Mathematical Society, 96 (1986), 425. doi: 10.1090/S0002-9939-1986-0822433-4.

[2]

H. I. Freedman, S. G. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583. doi: 10.1007/BF02218848.

[3]

H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations,, Mathematical Biosciences, 68 (1984), 213. doi: 10.1016/0025-5564(84)90032-4.

[4]

R. D. Holt, Predation, apparent competition and the structure of prey communities,, Theoretical Population Biology. An International Journal, 12 (1977), 197. doi: 10.1016/0040-5809(77)90042-9.

[5]

R. D. Holt and J. H. Lawton, The Ecological Consequences of Shared Natural Enemies,, Annual Review of Ecology and Systematics, 25 (1994), 495. doi: 10.1146/annurev.es.25.110194.002431.

[6]

R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation,, American Naturalist, 149 (1997), 745. doi: 10.1086/286018.

[7]

S.-B. Hsu, S. Ruan and T.-H. Yang, Analysis of three species Lotka-Volterra food web models with omnivory,, Journal of Mathematical Analysis and Applications, 426 (2015), 659. doi: 10.1016/j.jmaa.2015.01.035.

[8]

Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator,, Journal of Mathematical Biology, 67 (2013), 1227. doi: 10.1007/s00285-012-0584-z.

[9]

N. Krikorian, The Volterra model for three species predator-prey systems: Boundedness and stability,, Journal of Mathematical Biology, 7 (1979), 117. doi: 10.1007/BF00276925.

[10]

T. Namba and K. Tanabe, Omnivory and stability of food webs,, Ecological Complexity, 5 (2008), 73. doi: 10.1016/j.ecocom.2008.02.001.

[11]

E. R. Pianka, On $r$- and $K$-selection,, American Naturalist, 104 (1970), 592. doi: 10.1086/282697.

[12]

J. Vandermeer, Omnivory and the stability of food webs,, Journal of Theoretical Biology, 238 (2006), 497. doi: 10.1016/j.jtbi.2005.06.006.

[13]

S.-R. Zhou, W.-T. Li and G. Wang, Persistence and global stability of positive periodic solutions of three species food chains with omnivory,, Journal of Mathematical Analysis and Applications, 324 (2006), 397. doi: 10.1016/j.jmaa.2005.12.021.

show all references

References:
[1]

G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems,, Proceedings of the American Mathematical Society, 96 (1986), 425. doi: 10.1090/S0002-9939-1986-0822433-4.

[2]

H. I. Freedman, S. G. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583. doi: 10.1007/BF02218848.

[3]

H. I. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations,, Mathematical Biosciences, 68 (1984), 213. doi: 10.1016/0025-5564(84)90032-4.

[4]

R. D. Holt, Predation, apparent competition and the structure of prey communities,, Theoretical Population Biology. An International Journal, 12 (1977), 197. doi: 10.1016/0040-5809(77)90042-9.

[5]

R. D. Holt and J. H. Lawton, The Ecological Consequences of Shared Natural Enemies,, Annual Review of Ecology and Systematics, 25 (1994), 495. doi: 10.1146/annurev.es.25.110194.002431.

[6]

R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation,, American Naturalist, 149 (1997), 745. doi: 10.1086/286018.

[7]

S.-B. Hsu, S. Ruan and T.-H. Yang, Analysis of three species Lotka-Volterra food web models with omnivory,, Journal of Mathematical Analysis and Applications, 426 (2015), 659. doi: 10.1016/j.jmaa.2015.01.035.

[8]

Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator,, Journal of Mathematical Biology, 67 (2013), 1227. doi: 10.1007/s00285-012-0584-z.

[9]

N. Krikorian, The Volterra model for three species predator-prey systems: Boundedness and stability,, Journal of Mathematical Biology, 7 (1979), 117. doi: 10.1007/BF00276925.

[10]

T. Namba and K. Tanabe, Omnivory and stability of food webs,, Ecological Complexity, 5 (2008), 73. doi: 10.1016/j.ecocom.2008.02.001.

[11]

E. R. Pianka, On $r$- and $K$-selection,, American Naturalist, 104 (1970), 592. doi: 10.1086/282697.

[12]

J. Vandermeer, Omnivory and the stability of food webs,, Journal of Theoretical Biology, 238 (2006), 497. doi: 10.1016/j.jtbi.2005.06.006.

[13]

S.-R. Zhou, W.-T. Li and G. Wang, Persistence and global stability of positive periodic solutions of three species food chains with omnivory,, Journal of Mathematical Analysis and Applications, 324 (2006), 397. doi: 10.1016/j.jmaa.2005.12.021.

[1]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[2]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[3]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[4]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[5]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[6]

Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347

[7]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[8]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[9]

Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-39. doi: 10.3934/dcdsb.2019076

[10]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[11]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

[12]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[13]

Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999

[14]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[15]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[16]

Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669

[17]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[18]

Xiaoling Zou, Ke Wang. Optimal harvesting for a stochastic N-dimensional competitive Lotka-Volterra model with jumps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 683-701. doi: 10.3934/dcdsb.2015.20.683

[19]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[20]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]