Citation: |
[1] |
A. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992. |
[2] |
M. C. Bortolan, A. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.doi: 10.1016/j.jde.2014.04.008. |
[3] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976.doi: 10.1016/j.na.2009.09.037. |
[4] |
T. Caraballo, J. C. Jara, J. A. Langa and Z. Liu, Morse decomposition of attractors for non-autonomous dynamical systems, Adv. Nonlinear Stud., 13 (2013), 309-329.doi: 10.1515/ans-2013-0204. |
[5] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. |
[6] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.doi: 10.1007/978-1-4614-4581-4. |
[7] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.doi: 10.1016/j.na.2009.01.016. |
[8] |
A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.doi: 10.1016/j.jde.2006.08.009. |
[9] |
A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim., 27 (2006), 785-829.doi: 10.1080/01630560600882723. |
[10] |
V. V. Chephyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002. |
[11] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.doi: 10.1017/CBO9780511526404. |
[12] |
L. Desheng and P. E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn., 4 (2004), 373-384.doi: 10.1142/S0219493704001061. |
[13] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. |
[14] |
J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite-Dimensional Dynamical Systems-Geometric Theory, Applied Mathematical Sciences Vol. 47, Springer-Verlag, 1984.doi: 10.1007/0-387-22896-9_9. |
[15] |
J. K. Hale, X. B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp. 50 (1988), 89-123.doi: 10.1090/S0025-5718-1988-0917820-X. |
[16] |
J. K. Hale and G. Raugel, Lower semi-continuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl. 154 (1989), 281-326.doi: 10.1007/BF01790353. |
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics Vol. 840, Springer-Verlag, 1981. |
[18] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.doi: 10.1142/S0219493703000632. |
[19] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011.doi: 10.1090/surv/176. |
[20] |
O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511569418. |
[21] |
C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathematics, Vol. 2002, Springer, 2010.doi: 10.1007/978-3-642-14258-1. |
[22] |
J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001doi: 10.1007/978-94-010-0732-0. |
[23] |
R. J. Sacker and G. R. Sell, Skew-product flows, finite extensions of minimal transformation groups and almost periodic differential equations, Bull. Amer. Math. Soc., 79 (1973), 802-805.doi: 10.1090/S0002-9904-1973-13325-7. |
[24] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977), iv+67 pp. |
[25] |
R. J. Sacker, Skew-product Dynamical Systems, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., (1974)), Vol. II, 175-179. Academic Press, New York, 1976. |
[26] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4757-5037-9. |
[27] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0645-3. |