\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Synchronization in coupled stochastic sine-Gordon wave model

Abstract / Introduction Related Papers Cited by
  • The asymptotic synchronization at the level of global random attractors is investigated for a class of coupled stochastic second order in time evolution equations. The main focus is on sine-Gordon type models perturbed by additive white noise. The model describes distributed Josephson junctions. The analysis makes extensive use of the method of quasi-stability.
    Mathematics Subject Classification: Primary: 37L55, 34D06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Afraimovich, S. Chow and J. Hale, Synchronization in lattices of coupled oscillators, Physica D, 103 (1997), 442-451.doi: 10.1016/S0167-2789(96)00276-X.

    [2]

    L. Arnold, Random Dynamical Systems, Springer, Berlin/Heidelberg/New York, 1998.doi: 10.1007/978-3-662-12878-7.

    [3]

    A. Balanov, N. Janson, D. Postnov and O. Sosnovtseva, Synchronization: From Simple to Complex, Springer, Berlin-Heidelberg, 2009.

    [4]

    T. Caraballo, I. Chueshov and P. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2007), 1489-1507.doi: 10.1137/050647281.

    [5]

    T. Caraballo and P. Kloeden, The persistence of synchronization under environmental noise, Proc. Roy. Soc. London, 461 (2005), 2257-2267.doi: 10.1098/rspa.2005.1484.

    [6]

    T. Caraballo and J. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics Cont. Discr. Impul. Systems, Series A, 10 (2003), 491-513.

    [7]

    A. Carvalho and M. Primo, Boundary synchronization in parabolic problems with nonlinear boundary conditions, Dynamics Cont. Discr. Impul. Systems, 7 (2000), 541-560.

    [8]

    A. Carvalho, H. Rodrigues and T. Dlotko, Upper semicontinuity of attractors and synchronization, J. Math. Anal. Appl., 220 (1998), 13-41.doi: 10.1006/jmaa.1997.5774.

    [9]

    C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes Math. 580, Springer, Berlin, 1977.

    [10]

    I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 (in Russian); English translation: Acta, Kharkov, 2002.

    [11]

    I. Chueshov, Monotone Random Systems: Theory and Applications, Lect. Notes Math. 1779, Springer, Berlin/Heidelberg/New York, 2002.doi: 10.1007/b83277.

    [12]

    I. Chueshov, A reduction principle for coupled nonlinear parabolic-hyperbolic PDE, J. Evol. Eqns., 4 (2004), 591-612.doi: 10.1007/s00028-004-0175-6.

    [13]

    I. Chueshov, Invariant manifolds and nonlinear master-slave synchronization in coupled systems, Appl. Anal., 86 (2007), 269-286.doi: 10.1080/00036810601097629.

    [14]

    I. Chueshov, Synchronization in coupled second order in time infinite-dimensional models, Dyn. Partial Differ. Equ., 13 (2016), 1-29.doi: 10.4310/DPDE.2016.v13.n1.a1.

    [15]

    I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, Cham/Heidelberg/New York, 2015.doi: 10.1007/978-3-319-22903-4.

    [16]

    I. ChueshovSynchronization in Infinite-Dimensional Systems, book in preparation under the contract with Springer.

    [17]

    I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS 912, AMS, Providence, 2008.doi: 10.1090/memo/0912.

    [18]

    I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010.doi: 10.1007/978-0-387-87712-9.

    [19]

    I. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dyn. Diff. Eqns., 13 (2001), 355-380.doi: 10.1023/A:1016684108862.

    [20]

    I. Chueshov and B. Schmalfuss, Master-slave synchronization and invariant manifolds for coupled stochastic systems, J. Math. Physics, 51 (2010), 102702, 23pp.doi: 10.1063/1.3493646.

    [21]

    I. Chueshov and B. Schmalfuss, Stochastic dynamics in a fluid-plate interaction model with the only longitudinal deformations of the plate, Disc. Conts. Dyn. Systems - B, 20 (2015), 833-852.doi: 10.3934/dcdsb.2015.20.833.

    [22]

    X. M. Fan, Random attractor for a damped Sine-Gordon equation with white noise, Pacific J. Math., 216 (2004), 63-76.doi: 10.2140/pjm.2004.216.63.

    [23]

    X. M. Fan, Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise, Stochastic Anal. Appl., 24 (2006), 767-793.doi: 10.1080/07362990600751860.

    [24]

    X. M. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stochastic Anal. Appl., 25 (2007), 381-396.doi: 10.1080/07362990601139602.

    [25]

    J. K. Hale, Diffusive coupling, dissipation, and synchronization, J. Dyn. Dif. Eqs, 9 (1997), 1-52.doi: 10.1007/BF02219051.

    [26]

    J. K. Hale, X. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp., 50 (1988), 89-123.doi: 10.1090/S0025-5718-1988-0917820-X.

    [27]

    L. V. Kapitansky and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations, Leningrad Math. J., 2 (1991), 97-117.

    [28]

    G. Leonov and V. Smirnova, Mathematical Problems of Phase Synchronization Theory, St. Petersburg, Nauka, 2000 (in Russian).

    [29]

    J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

    [30]

    E. Mosekilde, Y. Maistrenko and D. Postnov, Chaotic Synchronization, World Scientific Publishing Co., River Edge, NJ, 2002.doi: 10.1142/9789812778260.

    [31]

    O. Naboka, Synchronization of nonlinear oscillations of two coupling Berger plates, Nonlin. Anal., TMA, 67 (2007), 1015-1026.doi: 10.1016/j.na.2006.06.034.

    [32]

    O. Naboka, Synchronization phenomena in the system consisting of m coupled Berger plates, J. Math. Anal. Appl., 341 (2008), 1107-1124.doi: 10.1016/j.jmaa.2007.10.068.

    [33]

    O. Naboka, On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping, Commun. Pure Appl. Anal., 8 (2009), 1933-1956.doi: 10.3934/cpaa.2009.8.1933.

    [34]

    G. Osipov, J. Kurths and C. Zhou, Synchronization in Oscillatory Networks, Springer, Berlin/Heidelberg, 2007.doi: 10.1007/978-3-540-71269-5.

    [35]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [36]

    G. Prato and G. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223.

    [37]

    J. Robinson, Stability of random attractors under perturbation and approximation, J. Diff. Eqns., 186 (2002), 652-669.doi: 10.1016/S0022-0396(02)00038-4.

    [38]

    H. Rodrigues, Abstract methods for synchronization and applications, Appl. Anal., 62 (1996), 263-296.doi: 10.1080/00036819608840483.

    [39]

    Z. W. Shen, S. F. Zhou and W. X. Shen, One-dimensional random attractor and rotation number of the stochastic damped Sine-Gordon equation, J.Diff. Eqns., 248 (2010), 1432-1457.doi: 10.1016/j.jde.2009.10.007.

    [40]

    W. X. Shen, Z. W. Shen and S. F. Zhou, Asymptotic dynamics of a class of coupled oscillators driven by white noises, Stoch. and Dyn., 13 (2013), 1350002[23 pages].doi: 10.1142/S0219493713500020.

    [41]

    S. Strogatz, Sync: How Order Emerges From Chaos in the Universe, Nature, and Daily Life, Hyperion Books, New York, 2003.

    [42]

    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [43]

    C. W. Wu, Synchronization in Coupled Chaotic Circuits and Systems, World Scientific Publishing Co., River Edge, NJ, 2002.doi: 10.1142/9789812778420.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(201) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return