Citation: |
[1] |
V. Afraimovich, S. Chow and J. Hale, Synchronization in lattices of coupled oscillators, Physica D, 103 (1997), 442-451.doi: 10.1016/S0167-2789(96)00276-X. |
[2] |
L. Arnold, Random Dynamical Systems, Springer, Berlin/Heidelberg/New York, 1998.doi: 10.1007/978-3-662-12878-7. |
[3] |
A. Balanov, N. Janson, D. Postnov and O. Sosnovtseva, Synchronization: From Simple to Complex, Springer, Berlin-Heidelberg, 2009. |
[4] |
T. Caraballo, I. Chueshov and P. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2007), 1489-1507.doi: 10.1137/050647281. |
[5] |
T. Caraballo and P. Kloeden, The persistence of synchronization under environmental noise, Proc. Roy. Soc. London, 461 (2005), 2257-2267.doi: 10.1098/rspa.2005.1484. |
[6] |
T. Caraballo and J. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics Cont. Discr. Impul. Systems, Series A, 10 (2003), 491-513. |
[7] |
A. Carvalho and M. Primo, Boundary synchronization in parabolic problems with nonlinear boundary conditions, Dynamics Cont. Discr. Impul. Systems, 7 (2000), 541-560. |
[8] |
A. Carvalho, H. Rodrigues and T. Dlotko, Upper semicontinuity of attractors and synchronization, J. Math. Anal. Appl., 220 (1998), 13-41.doi: 10.1006/jmaa.1997.5774. |
[9] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes Math. 580, Springer, Berlin, 1977. |
[10] |
I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999 (in Russian); English translation: Acta, Kharkov, 2002. |
[11] |
I. Chueshov, Monotone Random Systems: Theory and Applications, Lect. Notes Math. 1779, Springer, Berlin/Heidelberg/New York, 2002.doi: 10.1007/b83277. |
[12] |
I. Chueshov, A reduction principle for coupled nonlinear parabolic-hyperbolic PDE, J. Evol. Eqns., 4 (2004), 591-612.doi: 10.1007/s00028-004-0175-6. |
[13] |
I. Chueshov, Invariant manifolds and nonlinear master-slave synchronization in coupled systems, Appl. Anal., 86 (2007), 269-286.doi: 10.1080/00036810601097629. |
[14] |
I. Chueshov, Synchronization in coupled second order in time infinite-dimensional models, Dyn. Partial Differ. Equ., 13 (2016), 1-29.doi: 10.4310/DPDE.2016.v13.n1.a1. |
[15] |
I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, Cham/Heidelberg/New York, 2015.doi: 10.1007/978-3-319-22903-4. |
[16] |
I. Chueshov, Synchronization in Infinite-Dimensional Systems, book in preparation under the contract with Springer. |
[17] |
I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS 912, AMS, Providence, 2008.doi: 10.1090/memo/0912. |
[18] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010.doi: 10.1007/978-0-387-87712-9. |
[19] |
I. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dyn. Diff. Eqns., 13 (2001), 355-380.doi: 10.1023/A:1016684108862. |
[20] |
I. Chueshov and B. Schmalfuss, Master-slave synchronization and invariant manifolds for coupled stochastic systems, J. Math. Physics, 51 (2010), 102702, 23pp.doi: 10.1063/1.3493646. |
[21] |
I. Chueshov and B. Schmalfuss, Stochastic dynamics in a fluid-plate interaction model with the only longitudinal deformations of the plate, Disc. Conts. Dyn. Systems - B, 20 (2015), 833-852.doi: 10.3934/dcdsb.2015.20.833. |
[22] |
X. M. Fan, Random attractor for a damped Sine-Gordon equation with white noise, Pacific J. Math., 216 (2004), 63-76.doi: 10.2140/pjm.2004.216.63. |
[23] |
X. M. Fan, Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise, Stochastic Anal. Appl., 24 (2006), 767-793.doi: 10.1080/07362990600751860. |
[24] |
X. M. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stochastic Anal. Appl., 25 (2007), 381-396.doi: 10.1080/07362990601139602. |
[25] |
J. K. Hale, Diffusive coupling, dissipation, and synchronization, J. Dyn. Dif. Eqs, 9 (1997), 1-52.doi: 10.1007/BF02219051. |
[26] |
J. K. Hale, X. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp., 50 (1988), 89-123.doi: 10.1090/S0025-5718-1988-0917820-X. |
[27] |
L. V. Kapitansky and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations, Leningrad Math. J., 2 (1991), 97-117. |
[28] |
G. Leonov and V. Smirnova, Mathematical Problems of Phase Synchronization Theory, St. Petersburg, Nauka, 2000 (in Russian). |
[29] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. |
[30] |
E. Mosekilde, Y. Maistrenko and D. Postnov, Chaotic Synchronization, World Scientific Publishing Co., River Edge, NJ, 2002.doi: 10.1142/9789812778260. |
[31] |
O. Naboka, Synchronization of nonlinear oscillations of two coupling Berger plates, Nonlin. Anal., TMA, 67 (2007), 1015-1026.doi: 10.1016/j.na.2006.06.034. |
[32] |
O. Naboka, Synchronization phenomena in the system consisting of m coupled Berger plates, J. Math. Anal. Appl., 341 (2008), 1107-1124.doi: 10.1016/j.jmaa.2007.10.068. |
[33] |
O. Naboka, On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping, Commun. Pure Appl. Anal., 8 (2009), 1933-1956.doi: 10.3934/cpaa.2009.8.1933. |
[34] |
G. Osipov, J. Kurths and C. Zhou, Synchronization in Oscillatory Networks, Springer, Berlin/Heidelberg, 2007.doi: 10.1007/978-3-540-71269-5. |
[35] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[36] |
G. Prato and G. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223. |
[37] |
J. Robinson, Stability of random attractors under perturbation and approximation, J. Diff. Eqns., 186 (2002), 652-669.doi: 10.1016/S0022-0396(02)00038-4. |
[38] |
H. Rodrigues, Abstract methods for synchronization and applications, Appl. Anal., 62 (1996), 263-296.doi: 10.1080/00036819608840483. |
[39] |
Z. W. Shen, S. F. Zhou and W. X. Shen, One-dimensional random attractor and rotation number of the stochastic damped Sine-Gordon equation, J.Diff. Eqns., 248 (2010), 1432-1457.doi: 10.1016/j.jde.2009.10.007. |
[40] |
W. X. Shen, Z. W. Shen and S. F. Zhou, Asymptotic dynamics of a class of coupled oscillators driven by white noises, Stoch. and Dyn., 13 (2013), 1350002[23 pages].doi: 10.1142/S0219493713500020. |
[41] |
S. Strogatz, Sync: How Order Emerges From Chaos in the Universe, Nature, and Daily Life, Hyperion Books, New York, 2003. |
[42] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.doi: 10.1007/978-1-4684-0313-8. |
[43] |
C. W. Wu, Synchronization in Coupled Chaotic Circuits and Systems, World Scientific Publishing Co., River Edge, NJ, 2002.doi: 10.1142/9789812778420. |